基于DataFrame改变列类型的方法

yipeiwu_com5年前Python基础

今天用numpy 的linalg.det()求矩阵的逆的过程中出现了一个错误:

TypeError: No loop matching the specified signature and casting was found for ufunc det 

查了半天发现是数据类型的问题,numpy在算逆的时候会先检查一下数据类型是否一致,若不一致就会报错(话说这个错误提示信息也太难理解了,还得看源码o(╯□╰)o)。

由于我的数据是用pandas.DataFrame读取的,所以每一列的数据类型有可能不同。

回头检查一下数据,果然有的是int,有的是float。所以全部改为float64类型。

找到了如下的方法,以及DataFrame数据类型:

DataFrame 类型转换方法—astype()

import pandas as pd
df = pd.DataFrame([{'col1':'a', 'col2':'1'}, {'col1':'b', 'col2':'2'}])

print df.dtypes

df['col2'] = df['col2'].astype('int')
print '-----------'
print df.dtypes

df['col2'] = df['col2'].astype('float64')
print '-----------'
print df.dtypes

输出:

col1 object
col2 object
dtype: object
-----------
col1 object
col2  int32
dtype: object
-----------
col1  object
col2 float64
dtype: object

astype()也能一次改变所有数据的类型:

In[30]:a
Out[31]: 
   a   b   c   d
0 0.891380 0.442167 -0.539450 1.023458
1 -0.488131 -1.847104 -0.209799 -0.768713
2 1.290434 0.327096 0.358406 0.422209

In[32]:a.astype('int32')
Out[32]: 
 a b c d
0 0 0 0 1
1 0 -1 0 0
2 1 0 0 0

附:data type list

Data type Description
bool_ Boolean (True or False) stored as a byte
int_ Default integer type (same as C long; normally either int64 or int32)
intc Identical to C int (normally int32 or int64)
intp Integer used for indexing (same as C ssize_t; normally either int32 or int64)
int8 Byte (-128 to 127)
int16 Integer (-32768 to 32767)
int32 Integer (-2147483648 to 2147483647)
int64 Integer (-9223372036854775808 to 9223372036854775807)
uint8 Unsigned integer (0 to 255)
uint16 Unsigned integer (0 to 65535)
uint32 Unsigned integer (0 to 4294967295)
uint64 Unsigned integer (0 to 18446744073709551615)
float_ Shorthand for float64.
float16 Half precision float: sign bit, 5 bits exponent, 10 bits mantissa
float32 Single precision float: sign bit, 8 bits exponent, 23 bits mantissa
float64 Double precision float: sign bit, 11 bits exponent, 52 bits mantissa
complex_ Shorthand for complex128.
complex64 Complex number, represented by two 32-bit floats (real and imaginary components)
complex128 Complex number, represented by two 64-bit floats (real and imaginary components)

以上这篇基于DataFrame改变列类型的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python排序搜索基本算法之插入排序实例分析

Python排序搜索基本算法之插入排序实例分析

本文实例讲述了Python排序搜索基本算法之插入排序。分享给大家供大家参考,具体如下: 插入排序生活中非常常见,打扑克的时候人的本能就在用插入排序:把抽到的一张插入到手上牌的正确位置上。...

python 3.7.0 安装配置方法图文教程

python 3.7.0 安装配置方法图文教程

本文记录了python 3.7.0 安装配置方法,供大家参考,具体内容如下 S1 登入Python官网下载网址 S2 下载后缀为exe的可执行文件,并根据自己电脑/主机的系统选择32位还...

Python collections中的双向队列deque简单介绍详解

前言 在python神书《Python+Cookbook》中有这么一段话:在队列两端插入或删除元素时间复杂度都是 O(1) ,而在列表的开头插入或删除元素的时间复杂度为 O(N)。 于...

浅谈django开发者模式中的autoreload是如何实现的

在开发django应用的过程中,使用开发者模式启动服务是特别方便的一件事,只需要 python manage.py runserver 就可以运行服务,并且提供了非常人性化的autore...

python中字符串比较使用is、==和cmp()总结

经常写 shell 脚本知道,字符串判断可以用 =,!= 数字的判断是 -eq,-ne 等,但是 Python 确不是这样子的。 所以作为慢慢要转换到用 Python 写脚本,这些基本...