Python统计纯文本文件中英文单词出现个数的方法总结【测试可用】

yipeiwu_com5年前Python基础

本文实例讲述了Python统计纯文本文件中英文单词出现个数的方法。分享给大家供大家参考,具体如下:

第一版: 效率低

# -*- coding:utf-8 -*-
#!python3
path = 'test.txt'
with open(path,encoding='utf-8',newline='') as f:
  word = []
  words_dict= {}
  for letter in f.read():
    if letter.isalnum():
      word.append(letter)
    elif letter.isspace(): #空白字符 空格 \t \n
      if word:
        word = ''.join(word).lower() #转小写
        if word not in words_dict:
          words_dict[word] = 1
        else:
          words_dict[word] += 1
        word = []
#处理最后一个单词
if word:
  word = ''.join(word).lower() # 转小写
  if word not in words_dict:
    words_dict[word] = 1
  else:
    words_dict[word] += 1
  word = []
for k,v in words_dict.items():
  print(k,v)

运行结果:

we 4
are 1
busy 1
all 1
day 1
like 1
swarms 1
of 6
flies 1
without 1
souls 1
noisy 1
restless 1
unable 1
to 1
hear 1
the 7
voices 1
soul 1
as 1
time 1
goes 1
by 1
childhood 1
away 2
grew 1
up 1
years 1
a 1
lot 1
memories 1
once 1
have 2
also 1
eroded 1
bottom 1
childish 1
innocence 1
regardless 1
shackles 1
mind 1
indulge 1
in 1
world 1
buckish 1
focus 1
on 1
beneficial 1
principle 1
lost 1
themselves 1

第二版:

缺点:遇到大文件要一次读入内存,性能不好

# -*- coding:utf-8 -*-
#!python3
import re
path = 'test.txt'
with open(path,'r',encoding='utf-8') as f:
  data = f.read()
  word_reg = re.compile(r'\w+')
  #word_reg = re.compile(r'\w+\b')
  word_list = word_reg.findall(data)
  word_list = [word.lower() for word in word_list] #转小写
  word_set = set(word_list) #避免重复查询
  # words_dict = {}
  # for word in word_set:
  #   words_dict[word] = word_list.count(word)
  # 简洁写法
  words_dict = {word: word_list.count(word) for word in word_set}
  for k,v in words_dict.items():
    print(k,v)

运行结果:

on 1
also 1
souls 1
focus 1
soul 1
time 1
noisy 1
grew 1
lot 1
childish 1
like 1
voices 1
indulge 1
swarms 1
buckish 1
restless 1
we 4
hear 1
childhood 1
as 1
world 1
themselves 1
are 1
bottom 1
memories 1
the 7
of 6
flies 1
without 1
have 2
day 1
busy 1
to 1
eroded 1
regardless 1
unable 1
innocence 1
up 1
a 1
in 1
mind 1
goes 1
by 1
lost 1
principle 1
once 1
away 2
years 1
beneficial 1
all 1
shackles 1

第三版:

# -*- coding:utf-8 -*-
#!python3
import re
path = 'test.txt'
with open(path, 'r', encoding='utf-8') as f:
  word_list = []
  word_reg = re.compile(r'\w+')
  for line in f:
    #line_words = word_reg.findall(line)
    #比上面的正则更加简单
    line_words = line.split()
    word_list.extend(line_words)
  word_set = set(word_list) # 避免重复查询
  words_dict = {word: word_list.count(word) for word in word_set}
  for k, v in words_dict.items():
    print(k, v)

运行结果:

childhood 1
innocence, 1
are 1
of 6
also 1
lost 1
We 1
regardless 1
noisy, 1
by, 1
on 1
themselves. 1
grew 1
lot 1
bottom 1
buckish, 1
time 1
childish 1
voices 1
once 1
restless, 1
shackles 1
world 1
eroded 1
As 1
all 1
day, 1
swarms 1
we 3
soul. 1
memories, 1
in 1
without 1
like 1
beneficial 1
up, 1
unable 1
away 1
flies 1
goes 1
a 1
have 2
away, 1
mind, 1
focus 1
principle, 1
hear 1
to 1
the 7
years 1
busy 1
souls, 1
indulge 1

第四版:使用Counter统计

# -*- coding:utf-8 -*-
#!python3
import collections
import re
path = 'test.txt'
with open(path, 'r', encoding='utf-8') as f:
  word_list = []
  word_reg = re.compile(r'\w+')
  for line in f:
    line_words = line.split()
    word_list.extend(line_words)
  words_dict = dict(collections.Counter(word_list)) #使用Counter统计
  for k, v in words_dict.items():
    print(k, v)

运行结果:

We 1
are 1
busy 1
all 1
day, 1
like 1
swarms 1
of 6
flies 1
without 1
souls, 1
noisy, 1
restless, 1
unable 1
to 1
hear 1
the 7
voices 1
soul. 1
As 1
time 1
goes 1
by, 1
childhood 1
away, 1
we 3
grew 1
up, 1
years 1
away 1
a 1
lot 1
memories, 1
once 1
have 2
also 1
eroded 1
bottom 1
childish 1
innocence, 1
regardless 1
shackles 1
mind, 1
indulge 1
in 1
world 1
buckish, 1
focus 1
on 1
beneficial 1
principle, 1
lost 1
themselves. 1

注:这里使用的测试文本test.txt如下:

We are busy all day, like swarms of flies without souls, noisy, restless, unable to hear the voices of the soul. As time goes by, childhood away, we grew up, years away a lot of memories, once have also eroded the bottom of the childish innocence, we regardless of the shackles of mind, indulge in the world buckish, focus on the beneficial principle, we have lost themselves.

PS:这里再为大家推荐2款相关统计工具供大家参考:

在线字数统计工具:
http://tools.jb51.net/code/zishutongji

在线字符统计与编辑工具:
http://tools.jb51.net/code/char_tongji

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python文件与目录操作技巧汇总》、《Python文本文件操作技巧汇总》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

python检索特定内容的文本文件实例

windows环境下python2.7 脚本指定一个参数作为要检索的字符串 例如: >find.py ./ hello # coding=utf-8 import os im...

Python 使用list和tuple+条件判断详解

Python 使用list和tuple+条件判断详解

list list是一种有序的集合,可以随时添加和删除其中的元素。跟java不一样的是 可以使用arr[-1] 0>-x >=- len(arr) 索引的数字为 0~ le...

Python求两个文本文件以行为单位的交集、并集与差集的方法

本文实例讲述了Python求两个文本文件以行为单位的交集、并集与差集的方法。分享给大家供大家参考。具体实现方法如下: s1 = set(open('a.txt','r').readl...

Python人脸识别第三方库face_recognition接口说明文档

1. 查找图像中出现的人脸 代码示例: #导入face_recognition模块 import face_recognition #将jpg文件加载到numpy数组中...

Python 限制线程的最大数量的方法(Semaphore)

如下所示: import threading import time sem=threading.Semaphore(4) #限制线程的最大数量为4个 def gothrea...