利用pandas读取中文数据集的方法

yipeiwu_com6年前Python基础

直接利用numpy读取非数字型的数据集时需要先进行转换,而且python3在处理中文数据方面确实比较蛋疼。最近在学习周志华老师的那本西瓜书,需要没事和一堆西瓜反复较劲,之前进行联系的时候都是利用批量替换先清理一遍数据,不过这样实在是太麻烦了,今天偶然发现可以使用pandas来实现读取中文数据集的功能。

首先分享一下数据集:

编号,色泽,根蒂,敲声,纹理,脐部,触感,密度,含糖率,好瓜 
1,青绿,蜷缩,浊响,清晰,凹陷,硬滑,0.697,0.46,是 
2,乌黑,蜷缩,沉闷,清晰,凹陷,硬滑,0.774,0.376,是 
3,乌黑,蜷缩,浊响,清晰,凹陷,硬滑,0.634,0.264,是 
4,青绿,蜷缩,沉闷,清晰,凹陷,硬滑,0.608,0.318,是 
5,浅白,蜷缩,浊响,清晰,凹陷,硬滑,0.556,0.215,是 
6,青绿,稍蜷,浊响,清晰,稍凹,软粘,0.403,0.237,是 
7,乌黑,稍蜷,浊响,稍糊,稍凹,软粘,0.481,0.149,是 
8,乌黑,稍蜷,浊响,清晰,稍凹,硬滑,0.437,0.211,是 
9,乌黑,稍蜷,沉闷,稍糊,稍凹,硬滑,0.666,0.091,否 
10,青绿,硬挺,清脆,清晰,平坦,软粘,0.243,0.267,否 
11,浅白,硬挺,清脆,模糊,平坦,硬滑,0.245,0.057,否 
12,浅白,蜷缩,浊响,模糊,平坦,软粘,0.343,0.099,否 
13,青绿,稍蜷,浊响,稍糊,凹陷,硬滑,0.639,0.161,否 
14,浅白,稍蜷,沉闷,稍糊,凹陷,硬滑,0.657,0.198,否 
15,乌黑,稍蜷,浊响,清晰,稍凹,软粘,0.36,0.37,否 
16,浅白,蜷缩,浊响,模糊,平坦,硬滑,0.593,0.042,否 
17,青绿,蜷缩,沉闷,稍糊,稍凹,硬滑,0.719,0.103,否 

然后利用pandas将它读进来:

import pandas
d = pandas.read_csv(r"d:\data.csv",sep=",")
print(d)

如果要选取某一行数据,可以使用head方法:

d.head(1)

其中参数是行号。

也可以直接取某一列,如:

d['色泽']

如果要取某一个数据则可以将两种方法结合使用:

d.head(1)['色泽']

以上这篇利用pandas读取中文数据集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

在Python中输入一个以空格为间隔的数组方法

很多时候要从键盘连续输入一个数组,并用空格隔开,Python中的实现方法如下: >>> str_in = input('请以空格为间隔连续输入一个数组:') 然后...

对pandas将dataframe中某列按照条件赋值的实例讲解

在数据处理过程中,经常会出现对某列批量做某些操作,比如dataframe df要对列名为“values”做大于等于30设置为1,小于30设置为0操作,可以这样使用dataframe的ap...

python一键升级所有pip package的方法

pip_ungrade_all.py代码如下: # -*- coding: utf-8 -*- import pip from subprocess import call f...

实例讲解python中的序列化知识点

在程序运行的过程中,所有的变量都是在内存中,比如,定义一个dict: d = dict(name='Bob', age=20, score=88) 可以随时修改变量,比如把name...

Python解释执行原理分析

本文较为详细的分析了Python解释执行的原理,对于深入理解Python可以起到一定的帮助作用。具体分析如下: 首先,这里的解释执行是相对于编译执行而言的。我们都知道,使用C/C++之类...