TensorFlow利用saver保存和提取参数的实例

yipeiwu_com6年前Python基础

在训练循环中,定期调用 saver.save() 方法,向文件夹中写入包含了当前模型中所有可训练变量的 checkpoint 文件。

saver.save(sess, FLAGS.train_dir, global_step=step)

global_step是训练的第几步

保存参数:

import tensorflow as tf
 
W = tf.Variable([[1, 2, 3]], dtype=tf.float32)
b = tf.Variable([[1]], dtype=tf.float32)
 
saver = tf.train.Saver()
 
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
# 必须要指定文件夹,保存到ckpt文件
save_path = saver.save(sess, "winycg/1.ckpt")
print(save_path)

一次 saver.save() 后可以在文件夹中看到新增的四个文件,实际上每调用一次保存操作会创建后3个数据文件并创建一个检查点(checkpoint)文件,简单理解就是权重等参数被保存到 .chkp.data 文件中,以字典的形式;图和元数据被保存到 .chkp.meta 文件中,可以被 tf.train.import_meta_graph 加载到当前默认的图。

读取参数:

import tensorflow as tf
import numpy as np
 
W = tf.Variable(np.arange(3).reshape(1, 3), dtype=tf.float32)
b = tf.Variable(np.arange(1).reshape(1, 1), dtype=tf.float32)
 
saver = tf.train.Saver()
 
sess = tf.InteractiveSession()
# 读取参数时不需要global_variables_initializer()
save_path = saver.restore(sess, "parameter/1.ckpt")
print("weights:", sess.run(W))
print("bias:", sess.run(b))

weights: [[ 1. 2. 3.]]

bias: [[ 1.]]

以上这篇TensorFlow利用saver保存和提取参数的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python代码生成视频的缩略图的实例讲解

Reddit 上目前充斥着各种机器人账号,官方也非常支持这种行为,只要不是无意义的发言,机器人多了还能增加活跃度,吸引真人用户一起来各抒己见,比如说每周都有的一个“烦人的星期二”的帖子,...

python threading和multiprocessing模块基本用法实例分析

本文实例讲述了python threading和multiprocessing模块基本用法。分享给大家供大家参考,具体如下: 前言 这两天为了做一个小项目,研究了一下python的并发编...

Python如何实现强制数据类型转换

这篇文章主要介绍了Python如何实现强制数据类型转换,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 常用转换函数...

在python中创建指定大小的多维数组方式

python中创建指定大小的二维数组,有点像C++中进行动态申请内存创建数组,不过相比较而言,python中更为简单一些。 创建n行m列的二维数组: n = 2 m = 3 ma...

pytorch 模拟关系拟合——回归实例

pytorch 模拟关系拟合——回归实例

本次用 pytroch 来实现一个简单的回归分析,也借此机会来熟悉 pytorch 的一些基本操作。 1. 建立数据集 import torch from torch.autogra...