TensorFlow利用saver保存和提取参数的实例

yipeiwu_com6年前Python基础

在训练循环中,定期调用 saver.save() 方法,向文件夹中写入包含了当前模型中所有可训练变量的 checkpoint 文件。

saver.save(sess, FLAGS.train_dir, global_step=step)

global_step是训练的第几步

保存参数:

import tensorflow as tf
 
W = tf.Variable([[1, 2, 3]], dtype=tf.float32)
b = tf.Variable([[1]], dtype=tf.float32)
 
saver = tf.train.Saver()
 
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
# 必须要指定文件夹,保存到ckpt文件
save_path = saver.save(sess, "winycg/1.ckpt")
print(save_path)

一次 saver.save() 后可以在文件夹中看到新增的四个文件,实际上每调用一次保存操作会创建后3个数据文件并创建一个检查点(checkpoint)文件,简单理解就是权重等参数被保存到 .chkp.data 文件中,以字典的形式;图和元数据被保存到 .chkp.meta 文件中,可以被 tf.train.import_meta_graph 加载到当前默认的图。

读取参数:

import tensorflow as tf
import numpy as np
 
W = tf.Variable(np.arange(3).reshape(1, 3), dtype=tf.float32)
b = tf.Variable(np.arange(1).reshape(1, 1), dtype=tf.float32)
 
saver = tf.train.Saver()
 
sess = tf.InteractiveSession()
# 读取参数时不需要global_variables_initializer()
save_path = saver.restore(sess, "parameter/1.ckpt")
print("weights:", sess.run(W))
print("bias:", sess.run(b))

weights: [[ 1. 2. 3.]]

bias: [[ 1.]]

以上这篇TensorFlow利用saver保存和提取参数的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

实例讲解Python3中abs()函数

Python3 abs() 函数 描述 abs() 函数返回数字的绝对值。 语法 以下是 abs() 方法的语法: abs( x ) 参数 x-- 数值表达式,可以是整数,浮点...

python 常见字符串与函数的用法详解

strip去除空格 s = ' abcd efg ' print(s.strip()) #去除所有空格 print(s.lstrip()) #去除左边空格 print(s.rs...

python 读取txt,json和hdf5文件的实例

一.python读取txt文件 最简单的open函数: # -*- coding: utf-8 -*- with open("test.txt","r",encoding="gbk"...

Python实现的随机森林算法与简单总结

本文实例讲述了Python实现的随机森林算法。分享给大家供大家参考,具体如下: 随机森林是数据挖掘中非常常用的分类预测算法,以分类或回归的决策树为基分类器。算法的一些基本要点: *对大小...

用Python的urllib库提交WEB表单

复制代码 代码如下:class EntryDemo( Frame ): """Demonstrate Entrys and Event binding""" chosenrange =...