tensorflow 恢复指定层与不同层指定不同学习率的方法

yipeiwu_com6年前Python基础

如下所示:

#tensorflow 中从ckpt文件中恢复指定的层或将指定的层不进行恢复:
#tensorflow 中不同的layer指定不同的学习率
 
with tf.Graph().as_default():
		#存放的是需要恢复的层参数
	 variables_to_restore = []
	 #存放的是需要训练的层参数名,这里是没恢复的需要进行重新训练,实际上恢复了的参数也可以训练
  variables_to_train = []
  for var in slim.get_model_variables():
   excluded = False
   for exclusion in fine_tune_layers:
   #比如fine tune layer中包含logits,bottleneck
    if var.op.name.startswith(exclusion):
     excluded = True
     break
   if not excluded:
    variables_to_restore.append(var)
    #print('var to restore :',var)
   else:
    variables_to_train.append(var)
    #print('var to train: ',var)
 
 
  #这里省略掉一些步骤,进入训练步骤:
  #将variables_to_train,需要训练的参数给optimizer 的compute_gradients函数
  grads = opt.compute_gradients(total_loss, variables_to_train)
  #这个函数将只计算variables_to_train中的梯度
  #然后将梯度进行应用:
  apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
  #也可以直接调用opt.minimize(total_loss,variables_to_train)
  #minimize只是将compute_gradients与apply_gradients封装成了一个函数,实际上还是调用的这两个函数
  #如果在梯度里面不同的参数需要不同的学习率,那么可以:
 
  capped_grads_and_vars = []#[(MyCapper(gv[0]), gv[1]) for gv in grads_and_vars]
  #update_gradient_vars是需要更新的参数,使用的是全局学习率
  #对于不是update_gradient_vars的参数,将其梯度更新乘以0.0001,使用基本上不动
 	for grad in grads:
 		for update_vars in update_gradient_vars:
 			if grad[1]==update_vars:
 				capped_grads_and_vars.append((grad[0],grad[1]))
 			else:
 				capped_grads_and_vars.append((0.0001*grad[0],grad[1]))
 
 	apply_gradient_op = opt.apply_gradients(capped_grads_and_vars, global_step=global_step)
 
 	#在恢复模型时:
 
  with sess.as_default():
 
   if pretrained_model:
    print('Restoring pretrained model: %s' % pretrained_model)
    init_fn = slim.assign_from_checkpoint_fn(
    pretrained_model,
    variables_to_restore)
    init_fn(sess)
   #这样就将指定的层参数没有恢复

以上这篇tensorflow 恢复指定层与不同层指定不同学习率的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python matplotlib画图实例之绘制拥有彩条的图表

Python matplotlib画图实例之绘制拥有彩条的图表

生产定制一个彩条标签。 首先导入: import matplotlib.pyplot as plt import numpy as np from matplotlib import...

python pygame实现球球大作战

本文实例为大家分享了python pygame球球大作战的具体代码,供大家参考,具体内容如下 球球大作战:(大球吃小球,代码如下:) from random import randi...

python游戏开发之视频转彩色字符动画

python游戏开发之视频转彩色字符动画

本文实例为大家分享了python视频转彩色字符动画的具体代码,供大家参考,具体内容如下 一、效果 原图: 转换后: 效果可通过代码开头几行的参数调节 二、代码 开头几行代码,自己看着...

用Python shell简化开发

用Python shell简化开发

Python 编程语言已经成为 IT 中使用的最流行的语言之一。成功的一个原因是它可以用来解决各种问题。从网站开发到数据科学、机器学习到任务自动化,Python 生态系统有丰富的框架和库...

python gdal安装与简单使用

python gdal安装与简单使用

gdal安装 方式一:在网址 https://www.lfd.uci.edu/~gohlke/pythonlibs/ 下载对应python版本的whl文件,在命令行中pip instal...