pytorch: tensor类型的构建与相互转换实例

yipeiwu_com5年前Python基础

Summary

主要包括以下三种途径:

使用独立的函数;

使用torch.type()函数;

使用type_as(tesnor)将张量转换为给定类型的张量。

使用独立函数

import torch

tensor = torch.randn(3, 5)
print(tensor)

# torch.long() 将tensor投射为long类型
long_tensor = tensor.long()
print(long_tensor)

# torch.half()将tensor投射为半精度浮点类型
half_tensor = tensor.half()
print(half_tensor)

# torch.int()将该tensor投射为int类型
int_tensor = tensor.int()
print(int_tensor)

# torch.double()将该tensor投射为double类型
double_tensor = tensor.double()
print(double_tensor)

# torch.float()将该tensor投射为float类型
float_tensor = tensor.float()
print(float_tensor)

# torch.char()将该tensor投射为char类型
char_tensor = tensor.char()
print(char_tensor)

# torch.byte()将该tensor投射为byte类型
byte_tensor = tensor.byte()
print(byte_tensor)

# torch.short()将该tensor投射为short类型
short_tensor = tensor.short()
print(short_tensor)
-0.5841 -1.6370 0.1353 0.6334 -3.0761
-0.2628 0.1245 0.8626 0.4095 -0.3633
 1.3605 0.5055 -2.0090 0.8933 -0.6267
[torch.FloatTensor of size 3x5]


 0 -1 0 0 -3
 0 0 0 0 0
 1 0 -2 0 0
[torch.LongTensor of size 3x5]


-0.5840 -1.6367 0.1353 0.6333 -3.0762
-0.2627 0.1245 0.8628 0.4094 -0.3633
 1.3604 0.5054 -2.0098 0.8936 -0.6265
[torch.HalfTensor of size 3x5]


 0 -1 0 0 -3
 0 0 0 0 0
 1 0 -2 0 0
[torch.IntTensor of size 3x5]


-0.5841 -1.6370 0.1353 0.6334 -3.0761
-0.2628 0.1245 0.8626 0.4095 -0.3633
 1.3605 0.5055 -2.0090 0.8933 -0.6267
[torch.DoubleTensor of size 3x5]


-0.5841 -1.6370 0.1353 0.6334 -3.0761
-0.2628 0.1245 0.8626 0.4095 -0.3633
 1.3605 0.5055 -2.0090 0.8933 -0.6267
[torch.FloatTensor of size 3x5]


 0 -1 0 0 -3
 0 0 0 0 0
 1 0 -2 0 0
[torch.CharTensor of size 3x5]


 0 255 0 0 253
 0 0 0 0 0
 1 0 254 0 0
[torch.ByteTensor of size 3x5]


 0 -1 0 0 -3
 0 0 0 0 0
 1 0 -2 0 0
[torch.ShortTensor of size 3x5]

其中,torch.Tensor、torch.rand、torch.randn 均默认生成 torch.FloatTensor型 :

import torch

tensor = torch.Tensor(3, 5)
assert isinstance(tensor, torch.FloatTensor)

tensor = torch.rand(3, 5)
assert isinstance(tensor, torch.FloatTensor)

tensor = torch.randn(3, 5)
assert isinstance(tensor, torch.FloatTensor)

使用torch.type()函数

type(new_type=None, async=False)
import torch

tensor = torch.randn(3, 5)
print(tensor)

int_tensor = tensor.type(torch.IntTensor)
print(int_tensor)
-0.4449 0.0332 0.5187 0.1271 2.2303
 1.3961 -0.1542 0.8498 -0.3438 -0.2834
-0.5554 0.1684 1.5216 2.4527 0.0379
[torch.FloatTensor of size 3x5]


 0 0 0 0 2
 1 0 0 0 0
 0 0 1 2 0
[torch.IntTensor of size 3x5]

使用type_as(tesnor)将张量转换为给定类型的张量

import torch

tensor_1 = torch.FloatTensor(5)

tensor_2 = torch.IntTensor([10, 20])
tensor_1 = tensor_1.type_as(tensor_2)
assert isinstance(tensor_1, torch.IntTensor)

以上这篇pytorch: tensor类型的构建与相互转换实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python数据持久存储 pickle模块的基本使用方法解析

python的pickle模块实现了基本的数据序列和反序列化。通过pickle模块的序列化操作我们能够将程序中运行的对象信息保存到文件中去,永久存储;通过pickle模块的反序列化操作,...

Python画图高斯分布的示例

如下所示: import matplotlib.pyplot as plt import numpy as np import math def gaussian(sigma, x,...

Python内置模块logging用法实例分析

本文实例讲述了Python内置模块logging用法。分享给大家供大家参考,具体如下: 1、将日志直接输出到屏幕 import logging logging.debug('This...

Python中的rfind()方法使用详解

 rfind()方法返回所在子str 被找到的最后一个索引,或者-1,如果没有这样的索引不存在,可选择限制搜索字符串string[beg:end]. 语法 以下是rfind()...

Django中的ajax请求

Django中的ajax请求

需求:实现ajax请求,在界面上任意地方点击,可以成功传参。 创建项目如下所示: settings.py文件的设置,这次我们除了要注册app和设置templates文件夹的路径,还要多...