pytorch 数据集图片显示方法

yipeiwu_com6年前Python基础

图片显示

pytorch 载入的数据集是元组tuple 形式,里面包括了数据及标签(train_data,label),其中的train_data数据可以转换为torch.Tensor形式,方便后面计算使用。

同样给一些刚入门的同学在使用载入的数据显示图片的时候带来一些难以理解的地方,这里主要是将Tensor与numpy转换的过程,理解了这些就可以就行转换了

CIAFA10数据集

首先载入数据集,这里做了一些数据处理,包括图片尺寸、数据归一化等

import torch
from torch.autograd import Variable 
import matplotlib.pyplot as plt 
import torchvision.datasets as dset
import torchvision.transforms as transforms
from autoencoder import AutoEncoder
import torch.nn as nn
import torchvision
import numpy as np
dataset = dset.CIFAR10(root='../train/data', download=True, 
    transform=transforms.Compose([
    transforms.Scale(200),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
    transforms.Gray()
    ]))

在这里 dataset 是一个CIFAR10对象,(大家可以查看一下他的源代码)

方式一

dataset[1] = ([torch.FloatTensor of size 1x200x200],9)

载入的第二个数据是个tensor格式,包含一个标签 9

这里我们做的就是将torch.FloatTensor 转换为numpy,然后显示

b = dataset[1][0].numpy()
#取数据,不取标签

因为这里的b仍然是1*200*200的大小,所以要重新reshape一下,适合输出图像

plt.imshow(b.reshape(200,200),cmap = 'gray')
plt.show()

然后可以显示图像了

方式二

利用torch的接口

img = torchvision.utils.make_grid(dataset[1][0]).numpy()
plt.imshow(np.transpose(img,(1,2,0)))
plt.show()

这用np.transpose 是因为plt.imshow在显示 时候输入的是(imgsize,imgsieze,channels),而这里得到的img是(3,200,200)的格式,所以进行了转换,才能显示

以上这篇pytorch 数据集图片显示方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Sublime开发python程序的示例代码

本文介绍了Sublime开发python程序的示例代码,分享给大家,具体如下: 下载、安装Python程序 https://www.python.org/downloads/ 下载、安...

python实现猜数字游戏

python实现猜数字游戏

说明: 本例改编自《Python编程快速上手》。例子很简单我就不多说了 直接上代码,给初学python练手用。 给你6次机会猜对一个预先生成好的1-20之间的整数。覆盖一下知识点:...

python中的实例方法、静态方法、类方法、类变量和实例变量浅析

注:使用的是Python2.7。 一、实例方法 实例方法就是类的实例能够使用的方法。如下:复制代码 代码如下:class Foo:    def __ini...

利用Python获取赶集网招聘信息前篇

如何获取一个网站的相关信息,获取赶集网的招聘信息,本文为大家介绍利用python获取赶集网招聘信息的关键代码,供大家参考,具体内容如下 import re import urllib...

Pytorch实现的手写数字mnist识别功能完整示例

本文实例讲述了Pytorch实现的手写数字mnist识别功能。分享给大家供大家参考,具体如下: import torch import torchvision as tv impor...