使用pytorch进行图像的顺序读取方法

yipeiwu_com6年前Python基础

产生此次实验的原因:当我使用pytorch进行神经网络的训练时,需要每次向CNN传入一组图像,并且这些图片的存放位置是在两个文件夹中:

A文件夹:图片1a,图片2a,图片3a……图片1000a

B文件夹:图片1b, 图片2b,图片3b……图片1000b

所以在每个循环里,我都希望能从A中取出图片Na,同时从B文件夹中取出对应的图片Nb。

测试一:通过pytorch官方文档中的dataloader搭配python中的迭代器iterator

dataset = dset.ImageFolder( 
 root='./folder1', 
 transform=transforms.Compose([ 
  transforms.ToTensor(), 
  transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)), # bring images to (-1,1) 
 ]) 
) 
dataloader1 = torch.utils.data.DataLoader(dataset, batch_size=opt.batchSize, shuffle=True, num_workers=opt.workers) 
iterator1 = iter(dataloader1)
for i in range(1,1001):
data = iterator1.next() 
data2 = iterator2.next()

将两个dataloader当作数据集,然后分别调用迭代器iter(),然后在每次调用的时候使用next()来得到数据。

测试一下:将每次读入的图像输出,不对!发现图像并不是按照图像1,图像2,图像3......这样顺序读取的,而是很奇怪的顺序。所以为了要顺序读取数据,我们需要使用别的方法。

测试一的实验结果:此路不通!

from PIL import Image
pathDir = os.listdir('./folder') #获取文件夹内所有文件的名称,生成数组 
 pathDir.sort() #对所有文件名进行排序
 for allDir in pathDir: 
 child = os.path.join('%s/%s' % ('./folder', allDir))#合成文件名 
 fopen = Image.open(child).convert('RGB') #通过PIL读取文件
 transform_list = [transforms.ToTensor(), 
    transforms.Normalize((0.5, 0.5, 0.5), 
  (0.5, 0.5, 0.5))] 
 transform = transforms.Compose(transform_list)#将PIL格式的文件转换成 tensor
 image = transform(fopen) #转换

测试二:首先得到文件夹下的所有文件名,将文件名数组做sort()排序,然后每次通过文件名读取图像。

输出每次读入的图片,发现每次排序不正确,它的排序方法是图片1,图片10,图片100……

与我们的期望不一样,所以这种方法也不对(可以重写sort函数来进行自定义的排序,这里不做深入探究)

测试二的实验结果:此路或许可通!

测试三:通过自己构造每次访问的文件名来访问

for i in range(1,1001): 
 drain = irain.next() 
 dnorain = iground.next() 
 drain = os.path.join('%s/图像%s' % ('./rainy_img', i)) #跟上面一样,不过因为已经知道文件的取名顺序,所以拼出需要访问的文件名
 fopen = Image.open(drain).convert('RGB') 
 drain = transform(fopen) 
 print(drain) 

测试三的实验结果:此路畅通无阻!

以上这篇使用pytorch进行图像的顺序读取方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python 转换 Javascript %u 字符串为python unicode的代码

web采集的数据为 %u6B63%u5F0F%u4EBA%u5458,需要读取并转换为python对象,想了下不调用Javascript去eval,只能自己翻译了。 核心代码: i...

Python标准库inspect的具体使用方法

inspect模块用于收集python对象的信息,可以获取类或函数的参数的信息,源码,解析堆栈,对对象进行类型检查等等,有几个好用的方法: Doc:这样写到 The inspect m...

谈谈如何手动释放Python的内存

在上篇博客中,提到了对一个脚本进行的多次优化。当时以为已经优化得差不多了,但是当测试人员测试时,我才发现,踩到了Python的一个大坑。 在上文的优化中,对每500个用户,会进行一些计算...

使用Python将Mysql的查询数据导出到文件的方法

mysql官方提供了很多种connector,其中包括python的connector。 下载地址在:http://dev.mysql.com/downloads/connector/p...

tensorflow实现简单的卷积网络

使用tensorflow实现一个简单的卷积神经,使用的数据集是MNIST,本节将使用两个卷积层加一个全连接层,构建一个简单有代表性的卷积网络。 代码是按照书上的敲的,第一步就是导入数据库...