对Tensorflow中的矩阵运算函数详解

yipeiwu_com5年前Python基础

tf.diag(diagonal,name=None) #生成对角矩阵

import tensorflowas tf;
diagonal=[1,1,1,1]
with tf.Session() as sess:
  print(sess.run(tf.diag(diagonal))) 
 #输出的结果为[[1 0 0 0]
    [0 1 0 0]
    [0 0 1 0]
    [0 0 0 1]]

tf.diag_part(input,name=None) #功能与tf.diag函数相反,返回对角阵的对角元素

import tensorflow as tf;
diagonal =tf.constant([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]])
with tf.Session() as sess:
 print(sess.run(tf.diag_part(diagonal)))
#输出结果为[1,1,1,1]

tf.trace(x,name=None) #求一个2维Tensor足迹,即为对角值diagonal之和

import tensorflow as tf;
diagonal =tf.constant([[1,0,0,3],[0,1,2,0],[0,1,1,0],[1,0,0,1]])
with tf.Session() as sess:
 print(sess.run(tf.trace(diagonal)))#输出结果为4

tf.transpose(a,perm=None,name='transpose') #调换tensor的维度顺序,按照列表perm的维度排列调换tensor的顺序

import tensorflow as tf;
diagonal =tf.constant([[1,0,0,3],[0,1,2,0],[0,1,1,0],[1,0,0,1]])
with tf.Session() as sess:
 print(sess.run(tf.transpose(diagonal))) #输出结果为[[1 0 0 1]
                             [0 1 1 0]
                             [0 2 1 0]
                             [3 0 0 1]]

tf.matmul(a,b,transpose_a=False,transpose_b=False,a_is_sparse=False,b_is_sparse=False,name=None) #矩阵相乘

transpose_a=False,transpose_b=False #运算前是否转置

a_is_sparse=False,b_is_sparse=False #a,b是否当作系数矩阵进行运算

import tensorflow as tf;
A =tf.constant([1,0,0,3],shape=[2,2])
B =tf.constant([2,1,0,2],shape=[2,2])
with tf.Session() as sess:
 print(sess.run(tf.matmul(A,B)))
#输出结果为[[2 1]
   [0 6]]

tf.matrix_determinant(input,name=None) #计算行列式

import tensorflow as tf;
A =tf.constant([1,0,0,3],shape=[2,2],dtype=tf.float32)
with tf.Session() as sess:
 print(sess.run(tf.matrix_determinant(A))) 
#输出结果为3.0

tf.matrix_inverse(input,adjoint=None,name=None)

adjoint决定计算前是否进行转置

import tensorflow as tf;
A =tf.constant([1,0,0,2],shape=[2,2],dtype=tf.float64)
with tf.Session() as sess:
 print(sess.run(tf.matrix_inverse(A)))
#输出结果为[[ 1. 0. ]
   [ 0. 0.5]]

tf.cholesky(input,name=None) #对输入方阵cholesky分解,即为将一个对称正定矩阵表示成一个下三角矩阵L和其转置的乘积德分解

import tensorflow as tf;
A =tf.constant([1,0,0,2],shape=[2,2],dtype=tf.float64)
with tf.Session() as sess:
 print(sess.run(tf.cholesky(A)))
#输出结果为[[ 1.   0.  ]
   [ 0.   1.41421356]]

以上这篇对Tensorflow中的矩阵运算函数详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python多进程共享变量

本文实例为大家分享了python多进程共享变量的相关代码,供大家参考,具体内容如下 from multiprocessing import Process, Manager impo...

在Python中使用SimpleParse模块进行解析的教程

与大多数程序员一样,我经常需要标识存在于文本文档中的部件和结构,这些文档包括:日志文件、配置文件、分隔的数据以及格式更自由的(但还是半结构化的)报表格式。所有这些文档都拥有它们自己的“小...

python操作摄像头截图实现远程监控的例子

最近用python写了一个远程监控的程序,主要功能有:1.用邮件控制所以功能2.可以对屏幕截图,屏幕截图发送到邮箱3.可以用摄像头获取图片,这些图片上传到七牛4.开机自启动 复制代码 代...

Python合并字符串的3种方法

目的   将一些小的字符串合并成一个大字符串,更多考虑的是性能 方法    常见的方法有以下几种: 1.使用+=操作符 复制代码 代码如下:   BigString=small...

Python3实现发送QQ邮件功能(文本)

本文为大家分享了Python3实现发送QQ邮件功能:文本,供大家参考,具体内容如下 注意:使用前需要到qq中设置开启POP3 和IMAP服务和设置第三方授权码 然后在下面打x那里填入相...