python MNIST手写识别数据调用API的方法

yipeiwu_com6年前Python基础

MNIST数据集比较小,一般入门机器学习都会采用这个数据集来训练

下载地址:yann.lecun.com/exdb/mnist/

有4个有用的文件:
train-images-idx3-ubyte: training set images
train-labels-idx1-ubyte: training set labels
t10k-images-idx3-ubyte: test set images
t10k-labels-idx1-ubyte: test set labels

The training set contains 60000 examples, and the test set 10000 examples. 数据集存储是用binary file存储的,黑白图片。

下面给出load数据集的代码:

import os
import struct
import numpy as np
import matplotlib.pyplot as plt

def load_mnist():
  '''
  Load mnist data
  http://yann.lecun.com/exdb/mnist/

  60000 training examples
  10000 test sets

  Arguments:
    kind: 'train' or 'test', string charater input with a default value 'train'

  Return:
    xxx_images: n*m array, n is the sample count, m is the feature number which is 28*28
    xxx_labels: class labels for each image, (0-9)
  '''

  root_path = '/home/cc/deep_learning/data_sets/mnist'

  train_labels_path = os.path.join(root_path, 'train-labels.idx1-ubyte')
  train_images_path = os.path.join(root_path, 'train-images.idx3-ubyte')

  test_labels_path = os.path.join(root_path, 't10k-labels.idx1-ubyte')
  test_images_path = os.path.join(root_path, 't10k-images.idx3-ubyte')

  with open(train_labels_path, 'rb') as lpath:
    # '>' denotes bigedian
    # 'I' denotes unsigned char
    magic, n = struct.unpack('>II', lpath.read(8))
    #loaded = np.fromfile(lpath, dtype = np.uint8)
    train_labels = np.fromfile(lpath, dtype = np.uint8).astype(np.float)

  with open(train_images_path, 'rb') as ipath:
    magic, num, rows, cols = struct.unpack('>IIII', ipath.read(16))
    loaded = np.fromfile(train_images_path, dtype = np.uint8)
    # images start from the 16th bytes
    train_images = loaded[16:].reshape(len(train_labels), 784).astype(np.float)

  with open(test_labels_path, 'rb') as lpath:
    # '>' denotes bigedian
    # 'I' denotes unsigned char
    magic, n = struct.unpack('>II', lpath.read(8))
    #loaded = np.fromfile(lpath, dtype = np.uint8)
    test_labels = np.fromfile(lpath, dtype = np.uint8).astype(np.float)

  with open(test_images_path, 'rb') as ipath:
    magic, num, rows, cols = struct.unpack('>IIII', ipath.read(16))
    loaded = np.fromfile(test_images_path, dtype = np.uint8)
    # images start from the 16th bytes
    test_images = loaded[16:].reshape(len(test_labels), 784)  

  return train_images, train_labels, test_images, test_labels

再看看图片集是什么样的:

def test_mnist_data():
  '''
  Just to check the data

  Argument:
    none

  Return:
    none
  '''
  train_images, train_labels, test_images, test_labels = load_mnist()
  fig, ax = plt.subplots(nrows = 2, ncols = 5, sharex = True, sharey = True)
  ax =ax.flatten()
  for i in range(10):
    img = train_images[i][:].reshape(28, 28)
    ax[i].imshow(img, cmap = 'Greys', interpolation = 'nearest')
    print('corresponding labels = %d' %train_labels[i])

if __name__ == '__main__':
  test_mnist_data()

跑出的结果如下:


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

caffe binaryproto 与 npy相互转换的实例讲解

在caffe中,如果使用的是c++接口,均值文件默认为.binaryproto格式,而如果使用的是python接口,均值文件默认的是numpy的.npy格式,在工作中有时需要将两者进行互...

Python2.7下安装Scrapy框架步骤教程

Python2.7下安装Scrapy框架步骤教程

由于毕业设计的要求,需要在网站上抓取大量的数据,那么使用Scrapy框架可以让这一过程变得简单不少,毕竟Scrapy是一个为了爬去网站数据、提取结构性数据而编写的应用框架。于是,便开始了...

Python中使用items()方法返回字典元素对的教程

 items()方法返回字典的(键,值)元组对的列表 语法 以下是items()方法的语法: dict.items() 参数    ...

对Python3 goto 语句的使用方法详解

对Python3 goto 语句的使用方法详解

熟悉 C 语言的小伙伴一定对 goto 语句不陌生,它可以在代码之间随意的跳来跳去,但是好多老鸟都告诫大家,不要使用 goto,因为 goto 会使你的代码逻辑变的极其混乱。 但是有时候...

python3读取图片并灰度化图片的四种方法(OpenCV、PIL.Image、TensorFlow方法)总结

python3读取图片并灰度化图片的四种方法(OpenCV、PIL.Image、TensorFlow方法)总结

在处理图像的时候经常是读取图片以后把图片转换为灰度图。作为一个刚入坑的小白,我在这篇博客记录了四种处理的方法。 首先导入包: import numpy as np import cv...