python MNIST手写识别数据调用API的方法

yipeiwu_com6年前Python基础

MNIST数据集比较小,一般入门机器学习都会采用这个数据集来训练

下载地址:yann.lecun.com/exdb/mnist/

有4个有用的文件:
train-images-idx3-ubyte: training set images
train-labels-idx1-ubyte: training set labels
t10k-images-idx3-ubyte: test set images
t10k-labels-idx1-ubyte: test set labels

The training set contains 60000 examples, and the test set 10000 examples. 数据集存储是用binary file存储的,黑白图片。

下面给出load数据集的代码:

import os
import struct
import numpy as np
import matplotlib.pyplot as plt

def load_mnist():
  '''
  Load mnist data
  http://yann.lecun.com/exdb/mnist/

  60000 training examples
  10000 test sets

  Arguments:
    kind: 'train' or 'test', string charater input with a default value 'train'

  Return:
    xxx_images: n*m array, n is the sample count, m is the feature number which is 28*28
    xxx_labels: class labels for each image, (0-9)
  '''

  root_path = '/home/cc/deep_learning/data_sets/mnist'

  train_labels_path = os.path.join(root_path, 'train-labels.idx1-ubyte')
  train_images_path = os.path.join(root_path, 'train-images.idx3-ubyte')

  test_labels_path = os.path.join(root_path, 't10k-labels.idx1-ubyte')
  test_images_path = os.path.join(root_path, 't10k-images.idx3-ubyte')

  with open(train_labels_path, 'rb') as lpath:
    # '>' denotes bigedian
    # 'I' denotes unsigned char
    magic, n = struct.unpack('>II', lpath.read(8))
    #loaded = np.fromfile(lpath, dtype = np.uint8)
    train_labels = np.fromfile(lpath, dtype = np.uint8).astype(np.float)

  with open(train_images_path, 'rb') as ipath:
    magic, num, rows, cols = struct.unpack('>IIII', ipath.read(16))
    loaded = np.fromfile(train_images_path, dtype = np.uint8)
    # images start from the 16th bytes
    train_images = loaded[16:].reshape(len(train_labels), 784).astype(np.float)

  with open(test_labels_path, 'rb') as lpath:
    # '>' denotes bigedian
    # 'I' denotes unsigned char
    magic, n = struct.unpack('>II', lpath.read(8))
    #loaded = np.fromfile(lpath, dtype = np.uint8)
    test_labels = np.fromfile(lpath, dtype = np.uint8).astype(np.float)

  with open(test_images_path, 'rb') as ipath:
    magic, num, rows, cols = struct.unpack('>IIII', ipath.read(16))
    loaded = np.fromfile(test_images_path, dtype = np.uint8)
    # images start from the 16th bytes
    test_images = loaded[16:].reshape(len(test_labels), 784)  

  return train_images, train_labels, test_images, test_labels

再看看图片集是什么样的:

def test_mnist_data():
  '''
  Just to check the data

  Argument:
    none

  Return:
    none
  '''
  train_images, train_labels, test_images, test_labels = load_mnist()
  fig, ax = plt.subplots(nrows = 2, ncols = 5, sharex = True, sharey = True)
  ax =ax.flatten()
  for i in range(10):
    img = train_images[i][:].reshape(28, 28)
    ax[i].imshow(img, cmap = 'Greys', interpolation = 'nearest')
    print('corresponding labels = %d' %train_labels[i])

if __name__ == '__main__':
  test_mnist_data()

跑出的结果如下:


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

django的model操作汇整详解

django的model操作汇整详解

单表操作 增加数据 auther_obj = {"auther_name":"崔皓然","auther_age":1} models.auther.objects.create(...

Random 在 Python 中的使用方法

Random 在 Python 中的使用方法

1.random.random(): 会随机生成0-1之间的小数 例如: 2.random.uniform(min,max): 会随机生成 min - max 之间的小数,其中min...

Python 拷贝对象(深拷贝deepcopy与浅拷贝copy)

Python 拷贝对象(深拷贝deepcopy与浅拷贝copy)

1. copy.copy 浅拷贝 只拷贝父对象,不会拷贝对象的内部的子对象。2. copy.deepcopy 深拷贝 拷贝对象及其子对象一个很好的例子: ˂!-- Code highl...

python实现的守护进程(Daemon)用法实例

本文实例讲述了python实现的守护进程(Daemon)用法。分享给大家供大家参考。具体如下: def createDaemon(): "'Funzione che crea u...

Python命名空间详解

通俗的来说,Python中所谓的命名空间可以理解为一个容器。在这个容器中可以装许多标识符。不同容器中的同名的标识符是不会相互冲突的。理解python的命名空间需要掌握三条规则: 第一,赋...