django_orm查询性能优化方法

yipeiwu_com6年前Python基础

查询操作和性能优化

1.基本操作

models.Tb1.objects.create(c1='xx', c2='oo') 增加一条数据,可以接受字典类型数据 **kwargs
 
obj = models.Tb1(c1='xx', c2='oo')
obj.save()

models.Tb1.objects.get(id=123)     # 获取单条数据,不存在则报错(不建议)
models.Tb1.objects.all()        # 获取全部
models.Tb1.objects.filter(name='seven') # 获取指定条件的数据
models.Tb1.objects.exclude(name='seven') # 获取指定条件的数据


models.Tb1.objects.filter(name='seven').delete() # 删除指定条件的数据


models.Tb1.objects.filter(name='seven').update(gender='0') # 将指定条件的数据更新,均支持 **kwargs
obj = models.Tb1.objects.get(id=1)
obj.c1 = '111'
obj.save()                         # 修改单条数据

2.Foreign key的使用原因

  • 约束
  • 节省硬盘

但是多表查询会降低速度,大型程序反而不使用外键,而是用单表(约束的时候,通过代码判断)

extra

extra(self, select=None, where=None, params=None, tables=None, order_by=None, select_params=None)
  Entry.objects.extra(select={'new_id': "select col from sometable where othercol > %s"}, select_params=(1,))
  Entry.objects.extra(where=['headline=%s'], params=['Lennon'])
  Entry.objects.extra(where=["foo='a' OR bar = 'a'", "baz = 'a'"])
  Entry.objects.extra(select={'new_id': "select id from tb where id > %s"}, select_params=(1,), order_by=['-nid'])

F查询

from django.db.models import F
  models.Tb1.objects.update(num=F('num')+1)

Q查询

方式一:

  Q(nid__gt=10)
  Q(nid=8) | Q(nid__gt=10)
  Q(Q(nid=8) | Q(nid__gt=10)) & Q(caption='root')

方式二:
 

  con = Q()
  q1 = Q()
  q1.connector = 'OR'
  q1.children.append(('id', 1))
  q1.children.append(('id', 10))
  q1.children.append(('id', 9))
  q2 = Q()
  q2.connector = 'OR'
  q2.children.append(('c1', 1))
  q2.children.append(('c1', 10))
  q2.children.append(('c1', 9))
  con.add(q1, 'AND')
  con.add(q2, 'AND')
 
  models.Tb1.objects.filter(con)

exclude(self, *args, **kwargs)

# 条件查询
 # 条件可以是:参数,字典,Q

select_related(self, *fields)

性能相关:表之间进行join连表操作,一次性获取关联的数据。

  model.tb.objects.all().select_related()
  model.tb.objects.all().select_related('外键字段')
  model.tb.objects.all().select_related('外键字段__外键字段')

prefetch_related(self, *lookups)

性能相关:多表连表操作时速度会慢,使用其执行多次SQL查询  在内存中做关联,而不会再做连表查询

# 第一次 获取所有用户表
# 第二次 获取用户类型表where id in (用户表中的查到的所有用户ID)
models.UserInfo.objects.prefetch_related('外键字段')

annotate(self, *args, **kwargs)

# 用于实现聚合group by查询
from django.db.models import Count, Avg, Max, Min, Sum
 v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id'))
# SELECT u_id, COUNT(ui) AS `uid` FROM UserInfo GROUP BY u_id
v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id')).filter(uid__gt=1)
# SELECT u_id, COUNT(ui_id) AS `uid` FROM UserInfo GROUP BY u_id having count(u_id) > 1
v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id',distinct=True)).filter(uid__gt=1)
# SELECT u_id, COUNT( DISTINCT ui_id) AS `uid` FROM UserInfo GROUP BY u_id having count(u_id) > 1

extra(self, select=None, where=None, params=None, tables=None, order_by=None, select_params=None)

# 构造额外的查询条件或者映射,如:子查询
Entry.objects.extra(select={'new_id': "select col from sometable where othercol > %s"}, select_params=(1,))
Entry.objects.extra(where=['headline=%s'], params=['Lennon'])
Entry.objects.extra(where=["foo='a' OR bar = 'a'", "baz = 'a'"])
Entry.objects.extra(select={'new_id': "select id from tb where id > %s"}, select_params=(1,), order_by=['-nid'])

reverse(self):

# 倒序
 models.UserInfo.objects.all().order_by('-nid').reverse()
# 注:如果存在order_by,reverse则是倒序,如果多个排序则一一倒序

下面两个 取到的是对象,并且注意 取到的对象可以 获取其他字段(这样会再去查找该字段降低性能

defer(self, *fields):

models.UserInfo.objects.defer('username','id')
或
models.UserInfo.objects.filter(...).defer('username','id')
# 映射中排除某列数据

only(self, *fields):

# 仅取某个表中的数据
models.UserInfo.objects.only('username','id')
或
models.UserInfo.objects.filter(...).only('username','id')

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。  

相关文章

python对象与json相互转换的方法

在网络通信中,json是一种常用的数据格式,对于python来讲,将类转化为json数据以及将json数据转化为对象是一件非常容易的事情。 下面给出两者转化的方法 # -*- cod...

python数据结构之链表详解

python数据结构之链表详解

数据结构是计算机科学必须掌握的一门学问,之前很多的教材都是用C语言实现链表,因为c有指针,可以很方便的控制内存,很方便就实现链表,其他的语言,则没那么方便,有很多都是用模拟链表,不过这次...

python 生成器和迭代器的原理解析

一、生成器简介 在python中,生成器是根据某种算法边循环边计算的一种机制。主要就是用于操作大量数据的时候,一般我们会将操作的数据读入内存中处理,可以计算机的内存是比较宝贵的资源,我...

python实现图像检索的三种(直方图/OpenCV/哈希法)

python实现图像检索的三种(直方图/OpenCV/哈希法)

简介: 本文介绍了图像检索的三种实现方式,均用python完成,其中前两种基于直方图比较,哈希法基于像素分布。 检索方式是:提前导入图片库作为检索范围,给出待检索的图片,将其与图片库...

Python for i in range ()用法详解

for i in range ()作用: range()是一个函数, for i in range () 就是给i赋值: 比如 for i in range (1,3): 就是把1,2依...