实例分析python3实现并发访问水平切分表

yipeiwu_com6年前Python基础

场景说明

假设有一个mysql表被水平切分,分散到多个host中,每个host拥有n个切分表。

如果需要并发去访问这些表,快速得到查询结果, 应该怎么做呢?

这里提供一种方案,利用python3的asyncio异步io库及aiomysql异步库去实现这个需求。

代码演示

import logging
import random
import asynciofrom aiomysql 
import create_pool
# 假设mysql表分散在8个host, 每个host有16张子表
TBLES = {  "192.168.1.01": "table_000-015",
# 000-015表示该ip下的表明从table_000一直连续到table_015
  "192.168.1.02": "table_016-031", 
   "192.168.1.03": "table_032-047",  
    "192.168.1.04": "table_048-063", 
     "192.168.1.05": "table_064-079",  
     "192.168.1.06": "table_080-095", 
      "192.168.1.07": "table_096-0111", 
       "192.168.1.08": "table_112-0127",
}
USER = "xxx"PASSWD = "xxxx"# wrapper函数,用于捕捉异常def query_wrapper(func):
  async def wrapper(*args, **kwargs):
    try:
      await func(*args, **kwargs)    except Exception as e:
      print(e)  return wrapper
      # 实际的sql访问处理函数,通过aiomysql实现异步非阻塞请求@
      query_wrapperasync def query_do_something(ip, db, table):
  async with create_pool(host=ip, db=db, user=USER, password=PASSWD) as pool:
    async with pool.get() as conn:
      async with conn.cursor() as cur:
        sql = ("select xxx from {} where xxxx")
        await cur.execute(sql.format(table))
        res = await cur.fetchall()    
 # then do something...# 生成sql访问队列, 队列的每个元素包含要对某个表进行访问的函数及参数def gen_tasks():
  tasks = []  for ip, tbls in TBLES.items():
    cols = re.split('_|-', tbls)
    tblpre = "_".join(cols[:-2])
    min_num = int(cols[-2])
    max_num = int(cols[-1])   
      for num in range(min_num, max_num+1):
      tasks.append(
        (query_do_something, ip, 'your_dbname', '{}_{}'.format(tblpre, num))
      )
 
  random.shuffle(tasks)  
   return tasks# 按批量运行sql访问请求队列def run_tasks(tasks, batch_len):
  try:  
    for idx in range(0, len(tasks), batch_len):
      batch_tasks = tasks[idx:idx+batch_len]
      logging.info("current batch, start_idx:%s len:%s" % (idx, len(batch_tasks))) 
            for i in range(0, len(batch_tasks)):
        l = batch_tasks[i]
        batch_tasks[i] = asyncio.ensure_future(
          l[0](*l[1:])
        )
      loop.run_until_complete(asyncio.gather(*batch_tasks)) 
       except Exception as e:
    logging.warn(e)# main方法, 通过asyncio实现函数异步调用def main():
  loop = asyncio.get_event_loop()
 
  tasks = gen_tasks()
  batch_len = len(TBLES.keys()) * 5  # all up to you
  run_tasks(tasks, batch_len)
 
  loop.close()

以上就是本次相关内容的全部实例代码,大家可以本地测试以下,感谢你对【听图阁-专注于Python设计】的支持。

相关文章

tensorflow入门:TFRecordDataset变长数据的batch读取详解

在上一篇文章tensorflow入门:tfrecord 和tf.data.TFRecordDataset的使用里,讲到了使用如何使用tf.data.TFRecordDatase来对tfr...

python selenium 执行完毕关闭chromedriver进程示例

因为使用多次以后发现进程中出现了很多chromedriver的残留,造成卡顿,所以决定优化一下。 这个问题困扰了楼主很久,百度谷歌查来查去都只有java,后面根据java和seleniu...

Pytorch 多维数组运算过程的索引处理方式

背景:对 python 不熟悉,能看懂代码,也能实现一些简单的功能,但是对 python 的核心思想和编程技巧不熟,所以使 Pytorch 写 loss 的时候遇到很多麻烦,尤其是在 b...

Python2.7.10以上pip更新及其他包的安装教程

Python2.7.10以上pip更新及其他包的安装教程

Python2.7还是一个比较稳定的版本,目前80%以上的公司都在使用python2.7的版本。他不会在安装的时候报编码错误之类的问题。 但是从官网下载的Python上面自带的pip都是...

Django在pycharm下修改默认启动端口的方法

Django在pycharm下修改默认启动端口的方法

如题,度娘前几条答案说的都不清不楚,俺来补上: 点击下拉选项中的Edit Configuration进入如下界面: 如果左侧没有出现django server,说明您的项目是不dja...