python pandas消除空值和空格以及 Nan数据替换方法

yipeiwu_com5年前Python基础

在人工采集数据时,经常有可能把空值和空格混在一起,一般也注意不到在本来为空的单元格里加入了空格。这就给做数据处理的人带来了麻烦,因为空值和空格都是代表的无数据,而pandas中Series的方法notnull()会把有空格的数据也纳入进来,这样就不能完整地得到我们想要的数据了,这里给出一个简单的方法处理该问题。

方法1:

既然我们认为空值和空格都代表无数据,那么可以先得到这两种情况下的布尔数组。

这里,我们的DataFrame类型的数据集为df,其中有一个变量VIN,那么取得空值和空格的布尔数组为NONE_VIN。然后通过该布尔数组,就能得到我们要的数据了

NONE_VIN = (df["VIN"].isnull()) | (df["VIN"].apply(lambda x: str(x).isspace()))
df_null = df[NONE_VIN]
df_not_null = df[~NONE_VIN]

方法2:

直接使用Series的.apply方法来修改变量VIN中的每个值。如果发现是空格,就返回Nan,否则就返回原值。

df["VIN"]=df["VIN"].apply(lambda x: np.NaN if str(x).isspace() else x)
df_null = df[df["VIN"].isnull()]
df_not_null = df[df["VIN"].notnull()]

将dataframe中的NaN替换成希望的值

import pandas as pd
df1 = pd.DataFrame([{'col1':'a', 'col2':1}, {'col1':'b', 'col2':2}])
df2 = pd.DataFrame([{'col1':'a', 'col3':11}, {'col1':'c', 'col3':33}])

data = pd.merge(left=df1, right=df2, how='left', left_on='col1', right_on='col1')
print data
# 将NaN替换为None
print data.where(data.notnull(), None)

输出结果:

 col1 col2 col3
0 a  1 11
1 b  2 NaN
 col1 col2 col3
0 a  1 11
1 b  2 None

总结:

方法1的思路就是直接判定是否为空格,把空格纳入到选择中来。方法2的思路是先把空格转换为NaN,然后正常使用.isnull()或.notnull()来得到我们想要的数据。

以上这篇python pandas消除空值和空格以及 Nan数据替换方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python判断文件是否存在,不存在就创建一个的实例

如下所示: try: f =open("D:/1.txt",'r') f.close() except IOError: f = open("D:/1.txt",'w')...

对Python Class之间函数的调用关系详解

假设有Class A 和 Class B两个类,Class A中定义了a(),Class B中定义了b(). 现在我想在Class B中调用 Class A中的函数a()。此处介绍三种调...

Python编写通讯录通过数据库存储实现模糊查询功能

1.要求 数据库存储通讯录,要求按姓名/电话号码查询,查询条件只有一个输入入口,自动识别输入的是姓名还是号码,允许模糊查询。 2.实现功能 可通过输入指令进行操作。 (1)首先输入“ad...

使用Pytorch来拟合函数方式

其实各大深度学习框架背后的原理都可以理解为拟合一个参数数量特别庞大的函数,所以各框架都能用来拟合任意函数,Pytorch也能。 在这篇博客中,就以拟合y = ax + b为例(a和b为需...

Python使用Matplotlib实现Logos设计代码

Python使用Matplotlib实现Logos设计代码

本文主要展示了使用matplotlib设计logo的示例及完整代码,首先看下其演示结果: Python代码如下: import numpy as np import matplot...