python的concat等多种用法详解

yipeiwu_com6年前Python基础

本文为大家分享了python的concat等多种用法,供大家参考,具体内容如下

1、numpy中的concatenate()函数:

>>> a = np.array([[1, 2], [3, 4]])
>>> b = np.array([[5, 6]])
>>> np.concatenate((a, b), axis=0)
array([[1, 2],
    [3, 4],
    [5, 6]])
>>> np.concatenate((a, b.T), axis=1)
array([[1, 2, 5],
    [3, 4, 6]])

2、pandas中的merge,concat,join

# In[]:数据的合并
# 1 ,merge,类似数据库中的
# (1)内连接,pd.merge(a1, a2, on='key')
# (2)左连接,pd.merge(a1, a2, on='key', how='left')
# (3)右连接,pd.merge(a1, a2, on='key', how='right')
# (4)外连接, pd.merge(a1, a2, on='key', how='outer')
data1 = pd.DataFrame(
  np.arange(0,16).reshape(4,4),
  columns=list('abcd')
)
data1
data2 = [
  [4,1,5,7],
  [6,5,7,1],
  [9,9,123,129],
  [16,16,32,1]
]
data2 = pd.DataFrame(data2,columns = ['a','b','c','d'])
data2
# 内连接 ,交集
pd.merge(data1,data2,on=['b'])
# 左连接 注意:如果 on 有两个条件,on = ['a','b']
# how = 'left','right','outer'
pd.merge(data1,data2,on='b',how='left')
 
# 2,append,相当于R中的rbind
# ignore_index = True:这个时候 表示index重新记性排列,而且这种方法是复制一个样本
data1.append(data2,ignore_index = True)
 
# 3,join
data2.columns=list('pown')
# 列名不能重叠:在这里的用法和R中rbind很像,但是join的用法还是相对麻烦的
result = data1.join(data2)
result
 
# 4,concat 这个方法能够实现上面所有的方法的效果
# concat函数是pandas底下的方法,可以把数据根据不同的轴进行简单的融合
# pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
#    keys=None, levels=None, names=None, verify_integrity=False)
 
# 参数说明:
# objs:series,dataframe,或者panel构成的序列list
# axis:0 行,1列
# join:inner,outer
 
# a,相同字段表首尾巴相接
data1.columns = list('abcd')
data2.columns =list('abcd')
data3 = data2
# 为了更好的查看连接后的数据来源,添加一个keys更好查看
pd.concat([data1,data2,data3],keys=['data1','data2','data3'])
 
# b ,列合并(也就是行对齐):axis = 1,
 
pd.concat([data1,data2,data3],axis = 1,keys = ['data1','data2','data3'])
 
data4 = data3[['a','b','c']]
# 在有些数据不存在的时候,会自动填充NAN
pd.concat([data1,data4])
 
# c:join:inner 交集,outer ,并集
pd.concat([data1,data4],join='inner')
 
# 在列名没有一个相同的时候会报错
# data4.index = list('mnp')
# pd.concat([data1,data4])

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python分布式进程中你会遇到的问题解析

Python分布式进程中你会遇到的问题解析

小惊大怪 你是不是在用Python3或者在windows系统上编程?最重要的是你对进程和线程不是很清楚?那么恭喜你,在python分布式进程中,会有坑等着你去挖。。。(h...

查找python项目依赖并生成requirements.txt的方法

一起开发项目的时候总是要搭建环境和部署环境的,这个时候必须得有个python第三方包的list,一般都叫做requirements.txt。 如果一个项目使用时virtualenv环境,...

Python算术运算符实例详解

Python算术运算符 以下假设变量a为10,变量b为20: 运算符 描述 实例 +...

python二进制读写及特殊码同步实现详解

python对二进制文件的操作需要使用bytes类,直接写入整数是不行的,如果试图使用f.write(123)向文件中以二进制写入123,结果提示参数不是bytes类型。 impor...

Python中dict和set的用法讲解

Python中dict和set的用法讲解

dict Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。 举个例子,假设要...