对sklearn的使用之数据集的拆分与训练详解(python3.6)

yipeiwu_com6年前Python基础

研修课上讲了两个例子,融合一下。

主要演示大致的过程:

导入->拆分->训练->模型报告

以及几个重要问题:

①标签二值化

②网格搜索法调参

③k折交叉验证

④增加噪声特征(之前涉及)

from sklearn import datasets
#从cross_validation导入会出现warning,说已弃用
from sklearn.model_selection import train-test_split
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.svm import SVC
import sklearn.exceptioins
#导入鸢尾花数据集
iris = datasets.load_iris()
#将数据集拆分为训练集和测试集各一半
#其中X为数据特征(花萼、花瓣的高度宽度),为150*4的矩阵
#Y为鸢尾花种类(0, 1, 2三种),为150*1矩阵
#如果使用标签二值化, 将0, 1, 2表示为100 010 001
#使用y.label_binarize(y, classes[0, 1, 2]),变为150*3矩阵
X_train, X_test, y_train, y_test = train_test_split(
iris.data, iris.target, test_size=0.5, random_state=0)
#set the parameters by cross_validation
turn_parameters = [{'kernel' : ['rbf', 'gamma' : [1e-3, 1e - 4, 'C':[1,10,100,1000]}, 
{'kernel':['linear'], 'C':[1,10,100,1000]}
]
#clf分离器
#使用网格搜索法调超参数
#训练集做5折交叉验证
clf = GridSearchCV(SVC(C=1), turned_parameters, cv=5, scoring='%s_weighted' % score)
#用前一半train数据再做5折交叉验证
#因为之前的train_test_split已经分割为2份了
#fit-拟合
clf.fit(X_train, y_train)
#超参数
print(clf.best_params_)
#得分
for params, mean_score, scores in clf.gird_scores_:
 print("%.3f (+/-%.0.03f) for %r" % (mean_score, scores.std()*1.96,params))
#分类报告
y_true, y_pred = y_test, clf.predict(X_test)
print(classification_report(y_true, y_pred))

以上这篇对sklearn的使用之数据集的拆分与训练详解(python3.6)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python算法输出1-9数组形成的结果为100的所有运算式

问题: 编写一个在1,2,…,9(顺序不能变)数字之间插入+或-或什么都不插入,使得计算结果总是100的程序,并输出所有的可能性。例如:1 + 2 + 34–5 + 67–8 + 9 =...

python实现生成Word、docx文件的方法分析

本文实例讲述了python实现生成Word、docx文件的方法。分享给大家供大家参考,具体如下: http://python-docx.readthedocs.io/en/latest/...

Python编写带选项的命令行程序方法

运行python程序时,有时需要在命令行传入一些参数。常见的方式是在执行时,在脚本名后直接追加空格分隔的参数列表(例如 python test.py arg0 arg1 arg2),然后...

Python中实现单例模式的n种方式和原理

在Python中如何实现单例模式?这可以说是一个经典的Python面试题了。这回我们讲讲实现Python中实现单例模式的n种方式,和它的原理。 什么是单例模式 维基百科 中说: 单例模式...

Django项目基础配置和基本使用过程解析

Django项目基础配置和基本使用过程解析

这篇文章主要介绍了Django项目基础配置和基本使用过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 在需要的目录下创建Djan...