对sklearn的使用之数据集的拆分与训练详解(python3.6)

yipeiwu_com5年前Python基础

研修课上讲了两个例子,融合一下。

主要演示大致的过程:

导入->拆分->训练->模型报告

以及几个重要问题:

①标签二值化

②网格搜索法调参

③k折交叉验证

④增加噪声特征(之前涉及)

from sklearn import datasets
#从cross_validation导入会出现warning,说已弃用
from sklearn.model_selection import train-test_split
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.svm import SVC
import sklearn.exceptioins
#导入鸢尾花数据集
iris = datasets.load_iris()
#将数据集拆分为训练集和测试集各一半
#其中X为数据特征(花萼、花瓣的高度宽度),为150*4的矩阵
#Y为鸢尾花种类(0, 1, 2三种),为150*1矩阵
#如果使用标签二值化, 将0, 1, 2表示为100 010 001
#使用y.label_binarize(y, classes[0, 1, 2]),变为150*3矩阵
X_train, X_test, y_train, y_test = train_test_split(
iris.data, iris.target, test_size=0.5, random_state=0)
#set the parameters by cross_validation
turn_parameters = [{'kernel' : ['rbf', 'gamma' : [1e-3, 1e - 4, 'C':[1,10,100,1000]}, 
{'kernel':['linear'], 'C':[1,10,100,1000]}
]
#clf分离器
#使用网格搜索法调超参数
#训练集做5折交叉验证
clf = GridSearchCV(SVC(C=1), turned_parameters, cv=5, scoring='%s_weighted' % score)
#用前一半train数据再做5折交叉验证
#因为之前的train_test_split已经分割为2份了
#fit-拟合
clf.fit(X_train, y_train)
#超参数
print(clf.best_params_)
#得分
for params, mean_score, scores in clf.gird_scores_:
 print("%.3f (+/-%.0.03f) for %r" % (mean_score, scores.std()*1.96,params))
#分类报告
y_true, y_pred = y_test, clf.predict(X_test)
print(classification_report(y_true, y_pred))

以上这篇对sklearn的使用之数据集的拆分与训练详解(python3.6)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python基于动态规划算法解决01背包问题实例

Python基于动态规划算法解决01背包问题实例

本文实例讲述了Python基于动态规划算法解决01背包问题。分享给大家供大家参考,具体如下: 在01背包问题中,在选择是否要把一个物品加到背包中,必须把该物品加进去的子问题的解与不取该物...

Python去掉字符串中空格的方法

我们经常在处理字符串时遇到有很多空格的问题,一个一个的去手动删除不是我们程序员应该做的事情,今天这篇技巧的文章【听图阁-专注于Python设计】就来给大家讲一下,如何用Python去除字...

详解python列表(list)的使用技巧及高级操作

1、合并列表(extend) 跟元组一样,用加号(+)将两个列表加起来即可实现合并: In [1]: x=list(range(1, 13, 2)) In [2]: x + ['b'...

Python高级特性——详解多维数组切片(Slice)

(1) 我们先用arange函数创建一个数组并改变其维度,使之变成一个三维数组: >>> a = np.arange(24).reshape(2,3,4) >...

Python多线程处理实例详解【单进程/多进程】

Python多线程处理实例详解【单进程/多进程】

本文实例讲述了Python多线程处理操作。分享给大家供大家参考,具体如下: python — 多线程处理 1、一个进程执行完后,继续下一个进程 root@72132server:~#...