使用python绘制3维正态分布图的方法

yipeiwu_com6年前Python基础

今天使用python画了几个好玩的3D展示图,现在分享给大家。

先贴上图片

python绘制3维正态分布图

python绘制3维正态分布图

python绘制3维正态分布图

使用的python工具包为:

from matplotlib import pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

在贴代码之前,有必要从整体上了解这些图是如何画出来的。可以把上面每一个3D图片理解成一个长方体。输入数据是三维的,x轴y轴和z轴。在第三个图片里面有x、y和z坐标的标识。在第三张图片中,我们可以理解为,z是随着x和y变化的函数。就像一个人在山丘地区走动一样,其中x和y表示的是方向,z表示的这个人在上坡还是下坡。第二张图片的中间那个,其实是一个3维的正态分布图。

具体的公式为:

python绘制3维正态分布图

上面的是2维的,即只有x和y,如果是三维的话,需要一点变形,只需要在上面的公式基础之上把exp()里面改变为:exp(-((x-u)^2 + (y - u)^2)/(2q^2)), 这里的u表示平均值,q表示标准差。这样变化之后,z = f(x, y)。这就是z值的公式了,表示的是z值随着x和y值的变化而变化的函数。

下面贴一下代码

这是第二张图片的代码。

from matplotlib import pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure()
ax = Axes3D(fig)
len = 8;
step = 0.4;


def build_layer(z_value):
 x = np.arange(-len, len, step);
 y = np.arange(-len, len, step);
 z1 = np.full(x.size, z_value/2)
 z2 = np.full(x.size, z_value/2)
 z1, z2 = np.meshgrid(z1, z2)
 z = z1 + z2;

 x, y = np.meshgrid(x, y)
 return (x, y, z);

def build_gaussian_layer(mean, standard_deviation):
 x = np.arange(-len, len, step);
 y = np.arange(-len, len, step);
 x, y = np.meshgrid(x, y);
 z = np.exp(-((y-mean)**2 + (x - mean)**2)/(2*(standard_deviation**2)))
 z = z/(np.sqrt(2*np.pi)*standard_deviation);
 return (x, y, z);

# 具体函数方法可用 help(function) 查看,如:help(ax.plot_surface)
x1, y1, z1 = build_layer(0.2);
ax.plot_surface(x1, y1, z1, rstride=1, cstride=1, color='green')

x5, y5, z5 = build_layer(0.15);
ax.plot_surface(x5, y5, z5, rstride=1, cstride=1, color='pink')

# x2, y2, z2 = build_layer(-0.26);
# ax.plot_surface(x2, y2, z2, rstride=1, cstride=1, color='yellow')
#
# x6, y6, z6 = build_layer(-0.22);
# ax.plot_surface(x6, y6, z6, rstride=1, cstride=1, color='pink')

# x4, y4, z4 = build_layer(0);
# ax.plot_surface(x4, y4, z4, rstride=1, cstride=1, color='purple')

x3, y3, z3 = build_gaussian_layer(0, 1)
ax.plot_surface(x3, y3, z3, rstride=1, cstride=1, cmap='rainbow')
plt.show()


这是第三张图片的代码

import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d

x, y = np.mgrid[-1:1:20j, -1:1:20j]
z = x * np.exp(-x ** 2 - y ** 2)

ax = plt.subplot(111, projection='3d')
ax.plot_surface(x, y, z, rstride=2, cstride=1, cmap=plt.cm.coolwarm, alpha=0.8)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')

plt.show()

以上这篇使用python绘制3维正态分布图的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

基于python的多进程共享变量正确打开方式

多进程共享变量和获得结果 由于工程需求,要使用多线程来跑一个程序。但是因为听说python的多线程是假的,于是使用多进程,反正任务需要共享的参数少。 查阅资料,发现实现多进程主要使用Mu...

将Django框架和遗留的Web应用集成的方法

同由其他技术驱动的应用一样,在相同的Web服务器上运行Django应用也是可行的。 最简单直接的办法就是利用Apaches配置文件httpd.conf,将不同的URL类型分发至不同的技术...

python 寻找离散序列极值点的方法

使用 scipy.signal 的 argrelextrema 函数(API),简单方便 import numpy as np import pylab as pl import...

python3.6 +tkinter GUI编程 实现界面化的文本处理工具(推荐)

python3.6 +tkinter GUI编程 实现界面化的文本处理工具(推荐)

更新: 2017.07.17  补充滚动条、win批处理拉起py 2017.08.13  新增自定义图标 一、背景: 1.工作中自己及同事在查数据库、测试接口时需要对一些字符串或json...

Python反射和内置方法重写操作详解

本文实例讲述了Python反射和内置方法重写操作。分享给大家供大家参考,具体如下: isinstance和issubclass isinstance(obj,cls)检查是否obj是否是...