通过python的matplotlib包将Tensorflow数据进行可视化的方法

yipeiwu_com6年前Python基础

使用matplotlib中的一些函数将tensorflow中的数据可视化,更加便于分析

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

def add_layer(inputs, in_size, out_size, activation_function=None):
  Weights = tf.Variable(tf.random_normal([in_size, out_size]))
  biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
  Wx_plus_b = tf.matmul(inputs, Weights) + biases
  if activation_function is None:
    outputs = Wx_plus_b
  else:
    outputs = activation_function(Wx_plus_b)
  return outputs

# Make up some real data
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise


# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
# add hidden layer
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, activation_function=None)

# the error between prediction and real data
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
# important step

#initialize_all_variables已被弃用,使用tf.global_variables_initializer代替。 
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)

# plot the real data
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.ion() #使plt不会在show之后停止而是继续运行
plt.show()


for i in range(1000):
  # training
  sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
  if i % 50 == 0:
    # to visualize the result and improvement
    try:
      ax.lines.remove(lines[0]) #在每一次绘图之前先讲上一次绘图删除,使得画面更加清晰
    except Exception:
      pass
    prediction_value = sess.run(prediction, feed_dict={xs: x_data})
    # plot the prediction
    lines = ax.plot(x_data, prediction_value, 'r-', lw=5) #'r-'指绘制一个红色的线
    plt.pause(1) #指等待一秒钟

运行结果如下:(实际效果应该是动态的,应当使用ipython运行,使用jupyter运行则图片不是动态的)

python matplotlib包将Tensorflow数据进行可视化

注意:initialize_all_variables已被弃用,使用tf.global_variables_initializer代替。

以上这篇通过python的matplotlib包将Tensorflow数据进行可视化的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python控制台实现tab补全和清屏的例子

在shell(bash)下有2个很基本的功能,那就是tab补全,和clear清屏,对于我这种时不时不自觉的就手残要clear清屏一下的人来说,python控制台不能清屏很不爽,经过goo...

Python整数与Numpy数据溢出问题解决

Python整数与Numpy数据溢出问题解决

某位 A 同学发了我一张截图,问为何结果中出现了负数? 看了图,我第一感觉就是数据溢出了。数据超出能表示的最大值,就会出现奇奇怪怪的结果。 然后,他继续发了张图,内容是 print(1...

详解Python中正则匹配TAB及空格的小技巧

在正则中,使用.*可以匹配所有字符,其中.代表除\n外的任意字符,*代表0-无穷个,比如说要分别匹配某个目录下的子目录: >>> import re >>...

Python查看微信撤回消息代码

Python查看微信撤回消息代码

微信(WeChat) 是腾讯公司于2011年1月21日推出的一个为智能终端提供即时通讯服务的免费应用程序,由张小龙所带领的腾讯广州研发中心产品团队打造 。在互联网飞速发展的下、民众的需求...

Python判断有效的数独算法示例

本文实例讲述了Python判断有效的数独算法。分享给大家供大家参考,具体如下: 一、题目 判断一个 9x9 的数独是否有效。只需要根据以下规则,验证已经填入的数字是否有效即可。 1. 数...