对python多线程中互斥锁Threading.Lock的简单应用详解

yipeiwu_com6年前Python基础

一、线程共享进程资源

每个线程互相独立,相互之间没有任何关系,但是在同一个进程中的资源,线程是共享的,如果不进行资源的合理分配,对数据造成破坏,使得线程运行的结果不可预期。这种现象称为“线程不安全”。

实例如下:

#-*- coding: utf-8 -*-
import threading
import time
 
def test_xc():
  f = open("test.txt","a")
  f.write("test_dxc"+'\n')
  time.sleep(1)
  f.close()
 
if __name__ == '__main__':
  for i in xrange(5):
    t = threading.Thread(target=test_xc)
    t.start()

结果展示:

python多线程中互斥锁Threading.Lock

二、互斥锁同步

线程同步能够保证多个线程安全访问竞争资源,最简单的同步机制是引入互斥锁。互斥锁为资源引入一个状态:锁定/非锁定。某个线程要更改共享数据时,先将其锁定,此时资源的状态为“锁定”,其他线程不能更改;直到该线程释放资源,将资源的状态变成“非锁定”,其他的线程才能再次锁定该资源。互斥锁保证了每次只有一个线程进行写入操作,从而保证了多线程情况下数据的正确性。

threading模块中定义了Lock类,可以方便的处理锁定:

#创建锁
mutex = threading.Lock()
#锁定
mutex.acquire([timeout])#timeout是超时时间
#释放
mutex.release()

其中,锁定方法acquire可以有一个超时时间的可选参数timeout。如果设定了timeout,则在超时后通过返回值可以判断是否得到了锁,从而可以进行一些其他的处理。

三、使用线程锁

<pre name="code" class="python">#-*- coding: utf-8 -*-
import threading
import time
 
def test_xc():
  f = open("test.txt","a")
  f.write("test_dxc"+'\n')
  time.sleep(1)
  mutex.acquire()#取得锁
  f.close()
  mutex.release()#释放锁
 
if __name__ == '__main__':
  mutex = threading.Lock()#创建锁
  for i in xrange(5):
    t = threading.Thread(target=test_xc)
    t.start()

运行结果

python多线程中互斥锁Threading.Lock

以上这篇对python多线程中互斥锁Threading.Lock的简单应用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python中yaml配置文件模块的使用详解

简述 和GNU一样,YAML是一个递归着说“不”的名字。不同的是,GNU对UNIX说不,YAML说不的对象是XML。 YAML不是XML。 为什么不是XML呢?因为: YAML...

Python中的super用法详解

一、问题的发现与提出 在Python类的方法(method)中,要调用父类的某个方法,在Python 2.2以前,通常的写法如代码段1: 代码段1: 复制代码 代码如下:  c...

Flask教程之重定向与错误处理实例分析

本文实例讲述了Flask教程之重定向与错误处理。分享给大家供大家参考,具体如下: Flask类有一个redirect()方法. 当我们调用它时, 它会返回一个响应对象并且按指定的状态码将...

python中requests库session对象的妙用详解

在进行接口测试的时候,我们会调用多个接口发出多个请求,在这些请求中有时候需要保持一些共用的数据,例如cookies信息。 妙用1 requests库的session对象能够帮我们跨请...

Python 中包/模块的 `import` 操作代码

用实例来说明 import 的作用吧。 创建以下包结构。一个文件夹 cookFish/,下面包含两个文件, __init__.py和cookBook.py。 为什么取这几个名字呢?假设我...