python实现dijkstra最短路由算法

yipeiwu_com6年前Python基础

Dijkstra算法:又称迪杰斯特拉算法,迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题。迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止百度百科

注意:Dijkstra算法不能处理包含负边的图

# dijkstra算法实现,有向图和路由的源点作为函数的输入,最短路径最为输出
def dijkstra(graph,src):
 # 判断图是否为空,如果为空直接退出
 if graph is None:
 return None
 nodes = [i for i in range(len(graph))] # 获取图中所有节点
 visited=[] # 表示已经路由到最短路径的节点集合
 if src in nodes:
 visited.append(src)
 nodes.remove(src)
 else:
 return None
 distance={src:0} # 记录源节点到各个节点的距离
 for i in nodes:
 distance[i]=graph[src][i] # 初始化
 # print(distance)
 path={src:{src:[]}} # 记录源节点到每个节点的路径
 k=pre=src
 while nodes:
 mid_distance=float('inf')
 for v in visited:
  for d in nodes:
  new_distance = graph[src][v]+graph[v][d]
  if new_distance < mid_distance:
   mid_distance=new_distance
   graph[src][d]=new_distance # 进行距离更新
   k=d
   pre=v
 distance[k]=mid_distance # 最短路径
 path[src][k]=[i for i in path[src][pre]]
 path[src][k].append(k)
 # 更新两个节点集合
 visited.append(k)
 nodes.remove(k)
 print(visited,nodes) # 输出节点的添加过程
 return distance,path
if __name__ == '__main__':
 graph_list = [ [0, 2, 1, 4, 5, 1],
  [1, 0, 4, 2, 3, 4],
  [2, 1, 0, 1, 2, 4],
  [3, 5, 2, 0, 3, 3],
  [2, 4, 3, 4, 0, 1],
  [3, 4, 7, 3, 1, 0]]

 distance,path= dijkstra(graph_list, 0) # 查找从源点0开始带其他节点的最短路径
 print(distance,path)

节点的遍历过程如下:

最短路径输出:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中集合类型(set)学习小结

set 是一个无序的元素集合,支持并、交、差及对称差等数学运算, 但由于 set 不记录元素位置,因此不支持索引、分片等类序列的操作。 初始化 复制代码 代码如下: s0 = set()...

Pytorch中Tensor与各种图像格式的相互转化详解

前言 在pytorch中经常会遇到图像格式的转化,例如将PIL库读取出来的图片转化为Tensor,亦或者将Tensor转化为numpy格式的图片。而且使用不同图像处理库读取出来的图片格...

在cmd中运行.py文件: python的操作步骤

1 打开cmd, 不改变运行的目录: 输入python 空格  调试好的python文件路径 或者python 空格  将python文件拖入cmd中 2 打开cmd...

Django 导出项目依赖库到 requirements.txt过程解析

虚拟环境: 使用 pip freeze pip freeze > requirements.txt # 这种方式推荐配合 virtualenv ,否则会把整个环境中的包都列...

python列表推导式操作解析

这篇文章主要介绍了python列表推导式操作解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 基本格式 ​[表达式 fo...