python实现K近邻回归,采用等权重和不等权重的方法

yipeiwu_com6年前Python基础

如下所示:

from sklearn.datasets import load_boston
 
boston = load_boston()
 
from sklearn.cross_validation import train_test_split
 
import numpy as np;
 
X = boston.data
y = boston.target
 
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 33, test_size = 0.25)
 
print 'The max target value is: ', np.max(boston.target)
print 'The min target value is: ', np.min(boston.target)
print 'The average terget value is: ', np.mean(boston.target)
 
from sklearn.preprocessing import StandardScaler
 
ss_X = StandardScaler()
ss_y = StandardScaler()
 
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)
y_train = ss_y.fit_transform(y_train)
y_test = ss_y.transform(y_test)
 
from sklearn.neighbors import KNeighborsRegressor
 
uni_knr = KNeighborsRegressor(weights = 'uniform')
uni_knr.fit(X_train, y_train)
uni_knr_y_predict = uni_knr.predict(X_test)
 
dis_knr = KNeighborsRegressor(weights = 'distance')
dis_knr.fit(X_train, y_train)
dis_knr_y_predict = dis_knr.predict(X_test)
 
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
 
print 'R-squared value of uniform weights KNeighorRegressor is: ', uni_knr.score(X_test, y_test)
print 'The mean squared error of uniform weights KNeighorRegressor is: ', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(uni_knr_y_predict))
print 'The mean absolute error of uniform weights KNeighorRegressor is: ', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(uni_knr_y_predict))
 
print 'R-squared of distance weights KNeighorRegressor is: ', dis_knr.score(X_test, y_test)
print 'the value of mean squared error of distance weights KNeighorRegressor is: ', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(dis_knr_y_predict))
print 'the value of mean ssbsolute error of distance weights KNeighorRegressor is: ', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(dis_knr_y_predict))

以上这篇python实现K近邻回归,采用等权重和不等权重的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python对象中__del__方法起作用的条件详解

对象的__del__是对象在被gc消除回收的时候起作用的一个方法,它的执行一般也就意味着对象不能够继续引用。 示范代码如下: class Demo: def __del__(sel...

python常见的格式化输出小结

本文总结了一些简单基本的输出格式化形式,下面话不多说了,来看看详细的介绍吧。 一、打印字符串 >>> print "I'm %s" % ("jihite") I'...

django 开发忘记密码通过邮箱找回功能示例

一、流程分析: 1.点击忘记密码====》forget.html页面,输入邮箱和验证码,发送验证链接网址的邮件====》发送成功,跳到send_success.html提示 2.到邮箱里...

使用Pyinstaller的最新踩坑实战记录

前言 将py编译成可执行文件需要使用PyInstaller,之前给大家介绍了关于利用PyInstaller将python程序.py转为.exe的方法,在开始本文之前推荐大家可以先看下这篇...

python_opencv用线段画封闭矩形的实例

如下所示: def draw_circle(event,x,y,flags,param): global ix,iy,drawing,mode,start_x,start_y...