python实现K近邻回归,采用等权重和不等权重的方法

yipeiwu_com6年前Python基础

如下所示:

from sklearn.datasets import load_boston
 
boston = load_boston()
 
from sklearn.cross_validation import train_test_split
 
import numpy as np;
 
X = boston.data
y = boston.target
 
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 33, test_size = 0.25)
 
print 'The max target value is: ', np.max(boston.target)
print 'The min target value is: ', np.min(boston.target)
print 'The average terget value is: ', np.mean(boston.target)
 
from sklearn.preprocessing import StandardScaler
 
ss_X = StandardScaler()
ss_y = StandardScaler()
 
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)
y_train = ss_y.fit_transform(y_train)
y_test = ss_y.transform(y_test)
 
from sklearn.neighbors import KNeighborsRegressor
 
uni_knr = KNeighborsRegressor(weights = 'uniform')
uni_knr.fit(X_train, y_train)
uni_knr_y_predict = uni_knr.predict(X_test)
 
dis_knr = KNeighborsRegressor(weights = 'distance')
dis_knr.fit(X_train, y_train)
dis_knr_y_predict = dis_knr.predict(X_test)
 
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
 
print 'R-squared value of uniform weights KNeighorRegressor is: ', uni_knr.score(X_test, y_test)
print 'The mean squared error of uniform weights KNeighorRegressor is: ', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(uni_knr_y_predict))
print 'The mean absolute error of uniform weights KNeighorRegressor is: ', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(uni_knr_y_predict))
 
print 'R-squared of distance weights KNeighorRegressor is: ', dis_knr.score(X_test, y_test)
print 'the value of mean squared error of distance weights KNeighorRegressor is: ', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(dis_knr_y_predict))
print 'the value of mean ssbsolute error of distance weights KNeighorRegressor is: ', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(dis_knr_y_predict))

以上这篇python实现K近邻回归,采用等权重和不等权重的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python多线程扫描端口(线程池)

扫描服务器ip开放端口,用线程池ThreadPoolExecutor,i7的cpu可以开到600个左右现成,大概20s左右扫描完65535个端口,根据电脑配置适当降低线程数 #!/u...

Python数据类型中的“冒号“[::]——分片与步长操作示例

Python数据类型中的“冒号“[::]——分片与步长操作示例

本文实例讲述了Python数据类型中的“冒号“[::]——分片与步长操作。分享给大家供大家参考,具体如下: 例如有如下字符串: string = "welcome to jb51^_...

python关于矩阵重复赋值覆盖问题的解决方法

本文实例讲述了python关于矩阵重复赋值覆盖问题的解决方法。分享给大家供大家参考,具体如下: import itertools import numpy as np comb =...

python禁用键鼠与提权代码实例

要求 利用python实现禁用键盘鼠标 思路 经过查阅资料目前最好的办法是采用ctypes中的dll文件进行编写 from ctypes import * improt time...

kali中python版本的切换方法

kali中python版本的切换方法

如下所示: update-alternatives --config python 一条简单的命令,如下图所示: 以上这篇kali中python版本的切换方法就是小编分享给大家的...