对pandas处理json数据的方法详解

yipeiwu_com6年前Python基础

今天展示一个利用pandas将json数据导入excel例子,主要利用的是pandas里的read_json函数将json数据转化为dataframe。

先拿出我要处理的json字符串:

strtext='[{"ttery":"min","issue":"20130801-3391","code":"8,4,5,2,9","code1":"297734529","code2":null,"time":1013395466000},\
{"ttery":"min","issue":"20130801-3390","code":"7,8,2,1,2","code1":"298058212","code2":null,"time":1013395406000},\
{"ttery":"min","issue":"20130801-3389","code":"5,9,1,2,9","code1":"298329129","code2":null,"time":1013395346000},\
{"ttery":"min","issue":"20130801-3388","code":"3,8,7,3,3","code1":"298588733","code2":null,"time":1013395286000},\
{"ttery":"min","issue":"20130801-3387","code":"0,8,5,2,7","code1":"298818527","code2":null,"time":1013395226000}]'


pandas.read_json的语法如下:

pandas.read_json(path_or_buf=None, orient=None, typ='frame', dtype=True, 
convert_axes=True, convert_dates=True, keep_default_dates=True, 
numpy=False, precise_float=False, date_unit=None, encoding=None, 
lines=False, chunksize=None, compression='infer')

第一参数就是json文件路径或者json格式的字符串。

第二参数orient是表明预期的json字符串格式。orient的设置有以下几个值:

(1).'split' : dict like {index -> [index], columns -> [columns], data -> [values]}

这种就是有索引,有列字段,和数据矩阵构成的json格式。key名称只能是index,columns和data。

pandas处理json数据

'records' : list like [{column -> value}, ... , {column -> value}]

这种就是成员为字典的列表。如我今天要处理的json数据示例所见。构成是列字段为键,值为键值,每一个字典成员就构成了dataframe的一行数据。

'index' : dict like {index -> {column -> value}}

以索引为key,以列字段构成的字典为键值。如:

pandas处理json数据

'columns' : dict like {column -> {index -> value}}

这种处理的就是以列为键,对应一个值字典的对象。这个字典对象以索引为键,以值为键值构成的json字符串。如下图所示:

pandas处理json数据

'values' : just the values array。

values这种我们就很常见了。就是一个嵌套的列表。里面的成员也是列表,2层的。

pandas处理json数据

主要就说下这两个参数吧。下面我们回到示例中来。我们看前面可以发现示例是一个orient为records的json字符串。

这样就好处理了。看代码:

# -*- coding: utf-8 -*-
"""
Created on Sun Aug 5 09:01:38 2018
@author: FanXiaoLei
"""
import pandas as pd
strtext='[{"ttery":"min","issue":"20130801-3391","code":"8,4,5,2,9","code1":"297734529","code2":null,"time":1013395466000},\
{"ttery":"min","issue":"20130801-3390","code":"7,8,2,1,2","code1":"298058212","code2":null,"time":1013395406000},\
{"ttery":"min","issue":"20130801-3389","code":"5,9,1,2,9","code1":"298329129","code2":null,"time":1013395346000},\
{"ttery":"min","issue":"20130801-3388","code":"3,8,7,3,3","code1":"298588733","code2":null,"time":1013395286000},\
{"ttery":"min","issue":"20130801-3387","code":"0,8,5,2,7","code1":"298818527","code2":null,"time":1013395226000}]'
 
df=pd.read_json(strtext,orient='records')
df.to_excel('pandas处理json.xlsx',index=False,columns=["ttery","issue","code","code1","code2","time"])

最终写入excel如下图:

pandas处理json数据

以上这篇pandas处理json数据就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用python搭建Django应用程序步骤及版本冲突问题解决

使用python搭建Django应用程序步骤及版本冲突问题解决

首先你要确保你机器上面安装了python,其次,你还要确保你上面安装了Django。接下来,才能进入到搭建第一个Django应用程序很简单的操作,即在windows终端输入代码:复制代码...

Python实现端口复用实例代码

本文介绍Python实现端口复用实例如下所示: #coding=utf-8 import socket import sys import select import threadi...

Python中time模块与datetime模块在使用中的不同之处

Python 中提供了对时间日期的多种多样的处理方式,主要是在 time 和 datetime 这两个模块里。今天稍微梳理一下这两个模块在使用上的一些区别和联系。 time 在 Pyth...

使用numpy和PIL进行简单的图像处理方法

如下所示: from PIL import Image import numpy as np # 反相 # a = np.array(Image.open("test.jpg"))...

Windows平台Python连接sqlite3数据库的方法分析

本文实例讲述了Windows平台Python连接sqlite3数据库的方法。分享给大家供大家参考,具体如下: 之前没有接触过sqlite数据库,只是听到同事聊起这个。 有一次,手机端同事...