pandas数据集的端到端处理

yipeiwu_com6年前Python基础

1. 数据集基本信息

df = pd.read_csv()

df.head():前五行;

df.info():

  • rangeindex:行索引;
  • data columns:列索引;
  • dtypes:各个列的类型,
  • 主体部分是各个列值的情况,比如可判断是否存在 NaN 值;

对于非数值型的属性列

  • df[‘some_categorical_columns'].value_counts():取值分布;

df.describe(): 各个列的基本统计信息

  • count
  • mean
  • std
  • min/max
  • 25%, 50%, 75%:分位数

df.hist(bins=50, figsize=(20, 15)):统计直方图;

对 df 的每一列进行展示:

train_prices = pd.DataFrame({'price': train_df.SalePrice, 
    'log(price+1)': np.log1p(train_df.SalePrice)})
 # train_prices 共两列,一列列名为 price,一列列名为 log(price+1)
train_prices.hist()

2. 数据集拆分

def split_train_test(data, test_ratio=.3):
 shuffled_indices = np.random.permutation(len(data))
 test_size = int(len(data)*test_ratio)
 test_indices = shuffled_indices[:test_size]
 train_indices = shuffled_indices[test_size:]
 return data.iloc[train_indices], data.iloc[test_indices]

3. 数据预处理

  • 一键把 categorical 型特征(字符串类型)转化为数值型:
>> df['label'] = pd.Categorical(df['label']).codes
  • 一键把 categorical 型特征(字符串类型)转化为 one-hot 编码:
>> df = pd.get_dummies(df)
  • null 值统计与填充:
>> df.isnull().sum().sort_values(ascending=False).head()
# 填充为 mean 值
>> mean_cols = df.mean()
>> df = df.fillna(mean_cols)
>> df.isnull().sum().sum()
0

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对【听图阁-专注于Python设计】的支持。如果你想了解更多相关内容请查看下面相关链接

相关文章

Python pass 语句使用示例

Python pass是空语句,pass语句什么也不做,一般作为占位符或者创建占位程序,是为了保持程序结构的完整性,pass语句不会执行任何操作,比如: Python 语言 pass 语...

Python学习笔记之解析json的方法分析

Python学习笔记之解析json的方法分析

本文实例讲述了Python解析json的方法。分享给大家供大家参考,具体如下: 刚学习到Python中解析json的方法,觉得有必要在这里坐下笔记。 我是在python的内部环境中看的...

python如何压缩新文件到已有ZIP文件

本文为大家分享了python压缩新文件到已有ZIP文件的具体代码,供大家参考,具体内容如下 要点在于使用Python标准库zipfile创建压缩文件时,如果使用'a'模式时,可以追加新内...

解决Django删除migrations文件夹中的文件后出现的异常问题

migrate文件记录了每一次数据迁移的改变 解决方法:重建数据库 1.删除数据库 错误方法: python manage.py shell from app.models impo...

pandas 将list切分后存入DataFrame中的实例

如下所示: #-*- coding:utf-8 -*- import random import pandas as pd import numpy as np list=[1,2,...