Python提取频域特征知识点浅析

yipeiwu_com5年前Python基础

在多数的现代语音识别系统中,人们都会用到频域特征。梅尔频率倒谱系数(MFCC),首先计算信号的功率谱,然后用滤波器和离散余弦变换的变换来提取特征。本文重点介绍如何提取MFCC特征。

首先创建有一个Python文件,并导入库文件:     from scipy.io import wavfile     from python_speech_features import mfcc, logfbank     import matplotlib.pylab as plt1、首先创建有一个Python文件,并导入库文件:     from scipy.io import wavfile     from python_speech_features import mfcc, logfbank     import matplotlib.pylab as plt

读取音频文件:

samplimg_freq, audio = wavfile.read("data/input_freq.wav")

提取MFCC特征和过滤器特征:

     mfcc_features = mfcc(audio, samplimg_freq)

     filterbank_features = logfbank(audio, samplimg_freq)

打印参数,查看可生成多少个窗体:

   print('\nMFCC:\nNumber of windows =', mfcc_features.shape[0])

   print('Length of each feature =', mfcc_features.shape[1])

   print('\nFilter bank:\nNumber of windows=', filterbank_features.shape                                                         [0])

   print('Length of each feature =', filterbank_features.shape[1])

将MFCC特征可视化。转换矩阵,使得时域是水平的:

   mfcc_features = mfcc_features.T

   plt.matshow(mfcc_features)

   plt.title('MFCC')

将滤波器组特征可视化。转化矩阵,使得时域是水平的:

   filterbank_features = filterbank_features.T

   plt.matshow(filterbank_features)

   plt.title('Filter bank')

   

   plt.show()

相关文章

新手如何快速入门Python(菜鸟必看篇)

新手如何快速入门Python(菜鸟必看篇)

学习任何一门语言都是从入门(1年左右),通过不间断练习达到熟练水准(3到5年),少数人最终能精通语言,成为执牛耳者,他们是金字塔的最顶层。虽然万事开头难,但好的开始是成功的一半,今天这篇...

Django中使用celery完成异步任务的示例代码

Django中使用celery完成异步任务的示例代码

本文主要介绍如何在django中用celery完成异步任务,web项目中为了提高用户体验可以对一些耗时操作放到异步队列中去执行,例如激活邮件,后台计算操作等等 当前项目环境为: djan...

python实现美团订单推送到测试环境,提供便利操作示例

本文实例讲述了python实现美团订单推送到测试环境,提供便利操作。分享给大家供大家参考,具体如下: 背景: 有时候需要在测试环境下一个美团的订单,每次都找一堆的东西,太繁琐,于是写了...

详解在Python的Django框架中创建模板库的方法

不管是写自定义标签还是过滤器,第一件要做的事是创建模板库(Django能够导入的基本结构)。 创建一个模板库分两步走:     第一,决定模板库应该放在哪个...

pytorch中的transforms模块实例详解

pytorch中的transforms模块中包含了很多种对图像数据进行变换的函数,这些都是在我们进行图像数据读入步骤中必不可少的,下面我们讲解几种最常用的函数,详细的内容还请参考pyto...