numpy.linspace函数具体使用详解

yipeiwu_com6年前Python基础

numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)

在指定的间隔内返回均匀间隔的数字。

返回num均匀分布的样本,在[start, stop]。

这个区间的端点可以任意的被排除在外。

Parameters(参数):

 

start : scalar(标量)

The starting value of the sequence(序列的起始点).

stop : scalar

序列的结束点,除非endpoint被设置为False,在这种情况下, the sequence consists of all but the last of num + 1 evenly spaced samples(该序列包括所有除了最后的num+1上均匀分布的样本(感觉这样翻译有点坑)), 以致于stop被排除.当endpoint is False的时候注意步长的大小(下面有例子).

num : int, optional(可选)

生成的样本数,默认是50。必须是非负。

endpoint : bool, optional

如果是真,则一定包括stop,如果为False,一定不会有stop

retstep : bool, optional

If True, return (samples, step), where step is the spacing between samples.(看例子)

dtype : dtype, optional

The type of the output array. If dtype is not given, infer the data type from the other input arguments(推断这个输入用例从其他的输入中).

New in version 1.9.0.

Returns:

samples : ndarray

There are num equally spaced samples in the closed interval [start, stop] or the half-open interval [start, stop) (depending on whether endpoint is True or False).

step : float(只有当retstep设置为真的时候才会存在)

Only returned if retstep is True

Size of spacing between samples.

See also

arange

Similar to linspace, but uses a step size (instead of the number of samples)

.arange使用的是步长,而不是样本的数量

logspace

Samples uniformly distributed in log space. 

当endpoint被设置为False的时候

>>> import numpy as np
>>> np.linspace(1, 10, 10)
array([ 1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10.])
>>> np.linspace(1, 10, 10, endpoint = False)
array([ 1. , 1.9, 2.8, 3.7, 4.6, 5.5, 6.4, 7.3, 8.2, 9.1])

In [4]: np.linspace(1, 10, 10, endpoint = False, retstep= True)
Out[4]: (array([ 1. , 1.9, 2.8, 3.7, 4.6, 5.5, 6.4, 7.3, 8.2, 9.1]), 0.9)

官网的例子 

Examples

>>> >>> np.linspace(2.0, 3.0, num=5)
  array([ 2. , 2.25, 2.5 , 2.75, 3. ])
>>> np.linspace(2.0, 3.0, num=5, endpoint=False)
  array([ 2. , 2.2, 2.4, 2.6, 2.8])
>>> np.linspace(2.0, 3.0, num=5, retstep=True)
  (array([ 2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)

Graphical illustration:

>>> >>> import matplotlib.pyplot as plt
>>> N = 8
>>> y = np.zeros(N)
>>> x1 = np.linspace(0, 10, N, endpoint=True)
>>> x2 = np.linspace(0, 10, N, endpoint=False)
>>> plt.plot(x1, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x2, y + 0.5, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 1])
(-0.5, 1)
>>> plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python对绑定事件的鼠标、按键的判断实例

当多个事件绑定了同一个命令,那么在命令内部根据不同的事件进行处理的时候,怎么确定哪个事件发生了呢,用下面的来检测,经过测试处理tab键和alt键不能识别,其他单个都能被识别。 还有个事件...

pandas or sql计算前后两行数据间的增值方法

遇到这样一个需求,有一张表,要给这张表新增一个字段delta,delta的值等于每行的c1列的值减去上一行c1列的值。 我的解决方案,可以通过python的pandas的diff来实现,...

对python 矩阵转置transpose的实例讲解

在读图片时,会用到这么的一段代码: image_vector_len = np.prod(image_size)#总元素大小,3*55*47 img = Image.open(pat...

Pytorch to(device)用法

如下所示: device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model.to(devi...

在Python中关于中文编码问题的处理建议

字符串是Python中最常用的数据类型,而且很多时候你会用到一些不属于标准ASCII字符集的字符,这时候代码就很可能抛出UnicodeDecodeError: 'ascii' codec...