python绘制地震散点图

yipeiwu_com5年前Python基础

本项目是利用五年左右的世界地震数据,通过python的pandas库、matplotlib库、basemap库等进行数据可视化,绘制出地震散点图。主要代码如下所示

from __future__ import division
import pandas as pd
from pandas import Series,DataFrame
import numpy as np
from matplotlib.patches import Polygon
 
chi_provinces = ['北京','天津','上海','重庆',
     '河北','山西','辽宁','吉林',
     '黑龙江','江苏','浙江','安徽',
     '福建','江西','山东','河南',
     '湖北','湖南','广东','海南',
     '四川','贵州','云南','陕西',
     '甘肃','青海','台湾','内蒙古',
     '广西','西藏','宁夏','新疆',
     '香港','澳门'] #list of chinese provinces
 
 
def is_in_china(str):
 if str[:2] in chi_provinces:
  return True
 else:
  return False
 
def convert_data_2014(x):
 try:
  return float(x.strip())
 except ValueError:
  return x
 except AttributeError:
  return x
 
def format_lat_lon(x):
 try:
  return x/100
 except(TypeError):
  return np.nan
 
df = pd.read_excel(r'C:/Users/GGWS/Desktop/shuju/201601-12.xls')
df = df.append(pd.read_excel(r'C:/Users/GGWS/Desktop/shuju/201201-12.xls'),ignore_index = True)
df = df.append(pd.read_excel(r'C:/Users/GGWS/Desktop/shuju/shuju.xls'),ignore_index = True)
df = df.append(pd.read_excel(r'C:/Users/GGWS/Desktop/shuju/201501-12.xls'),ignore_index = True)
df_2014 = pd.read_excel(r'C:/Users/GGWS/Desktop/shuju/201401-12.xls') #have to introduce statics of 2014 independently because the format and the type of data of specific column in this data set are different from others
df['longitude'] = df['longitude'].apply(convert_data_2014)
df['latitude'] = df['latitude'].apply(convert_data_2014)
 
df_2014['longitude'] = df_2014['longitude'].apply(convert_data_2014)
df_2014['latitude'] = df_2014['latitude'].apply(convert_data_2014)
df = df.append(df_2014,ignore_index = True)
 
df = df[['latitude','longitude','magnitude','referenced place','time']] #only save four columns as valuable statics
 
df[['longitude','latitude']] = df[['longitude','latitude']].applymap(format_lat_lon) #use function "applymap" to convert the format of the longitude and latitude statics
df = df.dropna(axis=0,how='any') #drop all rows that have any NaN values
format_magnitude = lambda x: float(str(x).strip('ML'))
df['magnitude'] = df['magnitude'].apply(format_magnitude)
#df = df[df['referenced place'].apply(is_in_china)]
 
lon_mean = (df['longitude'].groupby(df['referenced place'])).mean()
lat_mean = (df['latitude'].groupby(df['referenced place'])).mean()
group_counts = (df['magnitude'].groupby(df['referenced place'])).count() 
after_agg_data = pd.concat([lon_mean,lat_mean,group_counts], axis = 1 )
after_agg_data.rename(columns = {'magnitude':'counts'} , inplace = True)
 #aggregate after grouping the data
 
after_sorted_data = after_agg_data.sort_values(by = 'counts',ascending = False)
new_index = np.arange(len(after_sorted_data.index))
after_sorted_data.index = new_index
paint_data = after_sorted_data[after_sorted_data['counts']>=after_sorted_data['counts'][80]]
 
 
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
 
plt.figure(figsize=(16,8))
m = Basemap()
m.readshapefile(r'C:/Users/GGWS/Desktop/jb/gadm36_CHN_1', 'states', drawbounds=True)
ax = plt.gca()
'''
for nshape,seg in enumerate (m.states):
 poly = Polygon(seg,facecolor = 'r')
 ax.add_patch(poly)
'''
m.drawcoastlines(linewidth=0.5)
m.drawcountries(linewidth=0.5)
m.shadedrelief()
 
 
for indexs in df.index:
  lon2,lat2 = df.loc[indexs].values[1],df.loc[indexs].values[0]
  x,y = m(lon2,lat2)
  m.plot(x,y,'ro',markersize = 0.5)      #获取经度值
'''
for indexs in after_sorted_data.index[:80]:
 lon,lat = after_sorted_data.loc[indexs].values[0],after_sorted_data.loc[indexs].values[1]
 x,y = m(lon,lat)
 m.plot(x,y,'wo',markersize = 10*(after_sorted_data.loc[indexs].values[2]/after_sorted_data.loc[0].values[2]))
'''
plt.title("Worldwide Earthquake") 
plt.show() 
 
#indexs-len(df.index)+80

效果如下

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现自动化上线脚本的示例

程序说明: 本程序实现将开发程序服务器中的打包文件通过该脚本上传到正式生产环境(注:生产环境和开发环境不互通) 程序基本思路: 将开发环境中的程序包拷贝到本地堡垒机 将程序包进行解压 获...

python 控制Asterisk AMI接口外呼电话的例子

Asterisk 是一个开放源代码的软件VoIP PBX系统,我们用Asterisk 搭建企业内部电话系统。 Asterisk AMI的Asterisk管理接口。可以实现对Asteris...

Django 框架模型操作入门教程

本文实例讲述了Django 框架模型操作。分享给大家供大家参考,具体如下: Django 对各种数据库提供了很好的支持,包括:PostgreSQL、MySQL、SQLite、Oracle...

TensorFlow saver指定变量的存取

TensorFlow saver指定变量的存取

今天和大家分享一下用TensorFlow的saver存取训练好的模型那点事。 1. 用saver存取变量; 2. 用saver存取指定变量。 用saver存取变量。 话不多说,先上...

pycharm使用matplotlib.pyplot不显示图形的解决方法

如下案例,可以正常保存图像,但是plt.show()不能正常显示图像,这里是使用pandas模块读取csv文件: # coding=utf-8 import pandas as pd...