Python 中的参数传递、返回值、浅拷贝、深拷贝

yipeiwu_com6年前Python基础

1. Python 的参数传递

Python的参数传递,无法控制引用传递还是值传递。对于不可变对象(数字、字符、元组等)的参数,更类似值传递;对于可变对象(列表、字典等),更类似引用传递。

def fun1(n):
  print(n)  # n在没修改前,指向的地址和main函数中n指向的地址相同
  n = 20   # n在修改后,指向的地址发生改变,相当于新建了一个值为20的参数n
def fun2(l):
  print(l)  # l在没修改前,指向的地址和main函数中l指向的地址相同
  l = [5,6,7,8,9] # l在修改后,指向的地址和main函数中l指向的地址仍相同,此时main函数中l的值也会改变
if __name__=="__main__":
  n = 10
  l = [1,2,3,4,5]
  fun1(n)
  fun2(l)
  print(n)  # n的值还是10
  print(l)  # l的值在fun2()中已经被改变

2. Python 的返回值

Python的返回值,无法控制引用传递还是值传递。对于不可变对象(数字、字符、元组等)的参数,更类似值传递;对于可变对象(列表、字典等),更类似引用传递。

str1 = 'hi'
l1 = [1,2,3,4,5]
def fun1():
  return str1
def fun2():
  return l1
str2 = fun1() # 此时,str1 和 str2 的指向地址是相同的
str2 = 'hello' # 修改后,str2 指向的地址发生改变,相当于新建了一个值为`hello`的变量
l2 = fun2() # 此时,l1 和 l2 的指向地址是相同的
l2 = [6,7,8,9] # 修改后,l2 指向的地址仍相同,修改 l2 会影响到 l1

3. Python 的浅拷贝和深拷贝

对于不可变对象(数字、字符、元组等),直接赋值的结果和深拷贝一致;对于可变对象(列表、字典等),直接赋值、浅拷贝、深拷贝结果不同。

# 不可变对象(数字、字符、元组等)的例子
a = 100 
b = a
b = 30
print('a: ', a)
print('b: ', b)
# 结果:
# a = 100
# b = 30
# 可变对象(列表、字典等)的例子
import copy
dict1 = {1:1, 'user':'test', 'num':[1, 2, 3]}
dict2 = dict1 # 直接赋值,两个字典指向地址一致
dict3 = dict1.copy() # 浅拷贝,只拷贝到原对象
dict4 = copy.deepcopy(dict1) # 深拷贝,除了拷贝原对象,也会拷贝子对象
dict1[1] = 11
dict1['user'] = '123'
dict1['num'].remove(1)
print('原字典修改后:',dict1)
print('直接赋值:',dict2)
print('浅拷贝:',dict3)
print('深拷贝:',dict4)
# 结果
# 原字典修改后:{1:11,'user': '123', 'num': [2, 3]}
# 直接赋值:{1:11,'user': '123', 'num': [2, 3]}
# 浅拷贝:{1:1,'user': 'test', 'num': [2, 3]}
# 深拷贝:{1:1,'user': 'test', 'num': [1, 2, 3]}

总结

以上所述是小编给大家介绍的Python 中的参数传递、返回值、浅拷贝、深拷贝,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对【听图阁-专注于Python设计】网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

相关文章

Pytorch之parameters的使用

1.预构建网络 class Net(nn.Module): def __init__(self): super(Net, self).__init__() # 1...

python实现自动化上线脚本的示例

程序说明: 本程序实现将开发程序服务器中的打包文件通过该脚本上传到正式生产环境(注:生产环境和开发环境不互通) 程序基本思路: 将开发环境中的程序包拷贝到本地堡垒机 将程序包进行解压 获...

Python解析命令行读取参数之argparse模块

在多个文件或者不同语言协同的项目中,python脚本经常需要从命令行直接读取参数。万能的python就自带了argprase包 使得这一工作变得简单而规范。PS:optpars...

详谈pandas中agg函数和apply函数的区别

在利用python进行数据分析 这本书中其实没有明确表明这两个函数的却别,而是说apply更一般化. 其实在这本书的第九章‘数组及运算和转换'点到了两者的一点点区别:agg是用来聚合运算...

由面试题加深对Django的认识理解

1. 对Django的认识? #1.Django是走大而全的方向,它最出名的是其全自动化的管理后台:只需要使用起ORM,做简单的对象定义,它就能自动生成数据库结构、以及全功能的管理后...