详解pandas删除缺失数据(pd.dropna()方法)

yipeiwu_com6年前Python基础

1.创建带有缺失值的数据库:

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index = list('abcde'), columns = ['one', 'two', 'three'])    # 随机产生5行3列的数据  
df.ix[1, :-1] = np.nan    # 将指定数据定义为缺失
df.ix[1:-1, 2] = np.nan

print('\ndf1')    # 输出df1,然后换行
print(df)

查看数据内容:

2.通常情况下删除行,使用参数axis = 0,删除列的参数axis = 1,通常不会这么做,那样会删除一个变量。

print('\ndrop row')
print(df.dropna(axis = 0))

删除后结果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python flask框架post接口调用示例

本文实例讲述了Python flask框架post接口调用。分享给大家供大家参考,具体如下: from flask import Flask,render_template,requ...

PyTorch读取Cifar数据集并显示图片的实例讲解

PyTorch读取Cifar数据集并显示图片的实例讲解

首先了解一下需要的几个类所在的package from torchvision import transforms, datasets as ds from torch.utils...

python numpy数组复制使用实例解析

这篇文章主要介绍了python numpy数组复制使用实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 在使用python时我们...

Python常用知识点汇总

Python常用知识点汇总

1、Set基本数据类型 a、set集合,是一个无序且不重复的元素集合 class set(object): """ set() -> new empty set ob...

详解Python二维数组与三维数组切片的方法

如果对象是二维数组,则切片应当是x[:]的形式,里面有一个冒号,冒号之前和之后分别表示对象的第0个维度和第1个维度; 如果对象是三维数组,则切片应当是x[::],里面有两个冒号,分割出...