Pandas之Dropna滤除缺失数据的实现方法

yipeiwu_com6年前Python基础

约定:

import pandas as pd
import numpy as np
from numpy import nan as NaN

滤除缺失数据

pandas的设计目标之一就是使得处理缺失数据的任务更加轻松些。pandas使用NaN作为缺失数据的标记。

使用dropna使得滤除缺失数据更加得心应手。

一、处理Series对象

通过**dropna()**滤除缺失数据:

se1=pd.Series([4,NaN,8,NaN,5])
print(se1)
se1.dropna()

代码结果:

0    4.0
1    NaN
2    8.0
3    NaN
4    5.0
dtype: float64

0    4.0
2    8.0
4    5.0
dtype: float64

通过布尔序列也能滤除:

se1[se1.notnull()]

代码结果:

0    4.0
2    8.0
4    5.0
dtype: float64

二、处理DataFrame对象

处理DataFrame对象比较复杂,因为你可能需要丢弃所有的NaN或部分NaN。

df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]])
df1

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
2 NaN NaN NaN
3 8.0 8.0 NaN

默认滤除所有包含NaN:

df1.dropna()

代码结果:

0 1 2
0 1.0 2.0 3.0

传入**how=‘all'**滤除全为NaN的行:

df1.dropna(how='all')

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
3 8.0 8.0 NaN

传入axis=1滤除列:

df1[3]=NaN
df1

代码结果:

0 1 2 3
0 1.0 2.0 3.0 NaN
1 NaN NaN 2.0 NaN
2 NaN NaN NaN NaN
3 8.0 8.0 NaN NaN

df1.dropna(axis=1,how="all")

代码结果:

传入thresh=n保留至少有n个非NaN数据的行:

df1.dropna(thresh=1)

df1.dropna(thresh=3)

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
2 NaN NaN NaN
3 8.0 8.0 NaN

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python 变量初始化空列表的例子

python 不能写new_loss=old_loss=[] 这样 两个变量实际上是同一个list 要分开写new_loss=[] Old_loss=[] 以下列数据文件为例: de...

python多进程下实现日志记录按时间分割

python多进程下实现日志记录按时间分割,供大家参考,具体内容如下 原理:自定义日志handler继承TimedRotatingFileHandler,并重写computeRollov...

对python中的for循环和range内置函数详解

对python中的for循环和range内置函数详解

如下所示: 1.for循环和range内置函数配合使用 range函数生成一个从零开始的列表, range(4)表示list:0123 range(1,11,2)表示从1开始到11-...

Python 脚本获取ES 存储容量的实例

Python 脚本获取ES 存储容量的实例

最近有需求统计ES存储容量,之前用PHP实现的,考虑到以后可能会经常写脚本查询,故用python写了一个脚本,代码如下: import urllib import urllib2 i...

python超简单解决约瑟夫环问题

本文实例讲述了python超简单解决约瑟夫环问题的方法。分享给大家供大家参考。具体分析如下: 约瑟环问题大家都熟悉。题目是这样的。一共有三十个人,从1-30依次编号。每次隔9个人就踢出去...