Pandas_cum累积计算和rolling滚动计算的用法详解

yipeiwu_com6年前Python基础

Pandas主要统计特征函数:

方法名 函数功能
sum() 计算数据样本的总和(按列计算)
mean() 计算数据样本的算术平均数
var() 计算数据样本的方差
std() 计算数据样本的标准差
corr() 计算数据样本的Spearman(Pearman)相关系数矩阵
cov() 计算数据样本的协方差矩阵
skew() 样本值的偏度(三阶矩)
kurt() 样本值的峰度(四阶矩)
describe() 给出样本的基本描述(基本统计量如均值、标准差等)

cum累积计算函数

cum系列函数是作为DataFrame或Series对象的方法出现的,因此命令格式为D.cumsum()

方法名 函数功能
cumsum() 依次给出前1、2、… 、n个数的和
cumprod() 依次给出前1、2、… 、n个数的积
cummax() 依次给出前1、2、… 、n个数的最大值
cummin() 依次给出前1、2、… 、n个数的最小值

计算出前n项和:

D=pd.Series(range(0,20))
D.cumsum() 
0    0
1    1
2    3
3    6
....
19  190
dtype: int64

rolling滚动计算函数

rolling_系列是pandas的函数,不是DataFrame或Series对象的方法,其格式为pd.rolling_mean(D,k),其中每k列计算一次平均值,滚动计算。

方法名 函数功能
rolling_sum() 计算数据样本的总和(按列计算)
rolling_mean() 数据样本的算术平均数
rolling_var() 计算数据样本的方差
rolling_std() 计算数据样本的标准差
rolling_corr() 计算数据样本的Spearman(Pearman)相关系数矩阵
rolling_cov() 计算数据样本的协方差矩阵
rolling_skew() 样本值的偏度(三阶矩)
rolling_kurt() 样本值的峰度(四阶矩)

依次对相邻两项求和:

pd.rolling_sum(D,2)
0   NaN  
1   1.0
2   3.0
3   5.0
4   7.0
....
19  37.0
dtype: float64

以上这篇Pandas_cum累积计算和rolling滚动计算的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

朴素贝叶斯Python实例及解析

本文实例为大家分享了Python朴素贝叶斯实例代码,供大家参考,具体内容如下 #-*- coding: utf-8 -*- #添加中文注释 from numpy import *...

python中format()函数的简单使用教程

python中format()函数的简单使用教程

先给大家介绍下python中format函数,在文章下面给大家介绍python.format()函数的简单使用 ---恢复内容开始--- python中format函数用于字符串的格式化...

详解Python并发编程之从性能角度来初探并发编程

详解Python并发编程之从性能角度来初探并发编程

. 前言 作为进阶系列的一个分支「并发编程」,我觉得这是每个程序员都应该会的。 并发编程 这个系列,我准备了将近一个星期,从知识点梳理,到思考要举哪些例子才能更加让人容易吃透这些知识...

在Python中如何传递任意数量的实参的示例代码

1 用法 在定义函数时,加上这样一个形参 "*形参名",就可以传递任意数量的实参啦: def make_tags(* tags): '''为书本打标签''' print('标...

python制作抖音代码舞

python制作抖音代码舞

本文实例为大家分享了抖音代码舞python制作代码,供大家参考,具体内容如下 一、效果图 二、转换代码 from img import Image ascil_char = l...