Python使用sklearn库实现的各种分类算法简单应用小结

yipeiwu_com5年前Python基础

本文实例讲述了Python使用sklearn库实现的各种分类算法简单应用。分享给大家供大家参考,具体如下:

KNN

from sklearn.neighbors import KNeighborsClassifier
import numpy as np
def KNN(X,y,XX):#X,y 分别为训练数据集的数据和标签,XX为测试数据
  model = KNeighborsClassifier(n_neighbors=10)#默认为5
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted

SVM

from sklearn.svm import SVC
def SVM(X,y,XX):
  model = SVC(c=5.0)
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted

SVM Classifier using cross validation

def svm_cross_validation(train_x, train_y):
  from sklearn.grid_search import GridSearchCV
  from sklearn.svm import SVC
  model = SVC(kernel='rbf', probability=True)
  param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}
  grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)
  grid_search.fit(train_x, train_y)
  best_parameters = grid_search.best_estimator_.get_params()
  for para, val in list(best_parameters.items()):
    print(para, val)
  model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)
  model.fit(train_x, train_y)
  return model

LR

from sklearn.linear_model import LogisticRegression
def LR(X,y,XX):
  model = LogisticRegression()
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted

决策树(CART)

from sklearn.tree import DecisionTreeClassifier
def CTRA(X,y,XX):
  model = DecisionTreeClassifier()
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted

随机森林

from sklearn.ensemble import RandomForestClassifier
def CTRA(X,y,XX):
  model = RandomForestClassifier()
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted

GBDT(Gradient Boosting Decision Tree)

from sklearn.ensemble import GradientBoostingClassifier
def CTRA(X,y,XX):
  model = GradientBoostingClassifier()
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted

朴素贝叶斯:一个是基于高斯分布求概率,一个是基于多项式分布求概率,一个是基于伯努利分布求概率。

from sklearn.naive_bayes import GaussianNB
from sklearn.naive_bayes import MultinomialNB
from sklearn.naive_bayes import BernoulliNB
def GNB(X,y,XX):
  model =GaussianNB()
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted
def MNB(X,y,XX):
  model = MultinomialNB()
  model.fit(X,y)
  predicted = model.predict(XX
  return predicted
def BNB(X,y,XX):
  model = BernoulliNB()
  model.fit(X,y)
  predicted = model.predict(XX
  return predicted

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

python使用turtle绘制分形树

python使用turtle绘制分形树

由于分形树具有对称性,自相似性,所以我们可以用递归来完成绘制。只要确定开始树枝长、每层树枝的减短长度和树枝分叉的角度,我们就可以把分形树画出来啦!! 代码如下: # -*- co...

pandas DataFrame行或列的删除方法的实现示例

pandas DataFrame行或列的删除方法的实现示例

此文我们继续围绕DataFrame介绍相关操作。 平时在用DataFrame时候,删除操作用的不太多,基本是从源DataFrame中筛选数据,组成一个新的DataFrame再继续操作。...

基于python全局设置id 自动化测试元素定位过程解析

背景: 在自动化化测试过程中,不方便准确获取页面的元素,或者在重构过程中方法修改造成元素层级改变,因此通过设置id准备定位。 一、python准备工作: 功能:用自动化的方式进行批量处理...

在Python中使用zlib模块进行数据压缩的教程

Python标准模块中,有多个模块用于数据的压缩与解压缩,如zipfile,gzip, bz2等等。上次介绍了zipfile模块,今天就来讲讲zlib模块。 zlib.compress(...

使用tensorboard可视化loss和acc的实例

1.用try...except...避免因版本不同出现导入错误问题 try: image_summary = tf.image_summary scalar_summary =...