python 图片去噪的方法示例

yipeiwu_com6年前Python基础

图像可能在生成、传输或者采集过程中夹带了噪声,去噪声是图像处理中常用的手法。通常去噪声用滤波的方法,比如中值滤波、均值滤波。但是那样的算法不适合用在处理字符这样目标狭长的图像中,因为在滤波的过程中很有可能会去掉字符本身的像素。

一个采用的是去除杂点的方法来进行去噪声处理的。具体算法如下:扫描整个图像,当发现一个黑色点的时候,就考察和该黑色点间接或者直接相连接的黑色点的个数有多少,如果大于一定的值,那就说明该点不是离散点,否则就是离散点,把它去掉。在考察相连的黑色点的时候用的是递归的方法。此处,我简单的用python实现了,大家可以参考以下。

#coding=utf-8
"""
造物奇迹QQ2737499951
"""
import cv2
import numpy as np
from matplotlib import pyplot as plt
from PIL import Image,ImageEnhance,ImageFilter
 
img_name = 'test.jpg'
#去除干扰线
im = Image.open(img_name)
#图像二值化
enhancer = ImageEnhance.Contrast(im)
im = enhancer.enhance(2)
im = im.convert('1')
data = im.getdata()
w,h = im.size
#im.show()
black_point = 0
for x in xrange(1,w-1):
  for y in xrange(1,h-1):
    mid_pixel = data[w*y+x] #中央像素点像素值
    if mid_pixel == 0: #找出上下左右四个方向像素点像素值
      top_pixel = data[w*(y-1)+x]
      left_pixel = data[w*y+(x-1)]
      down_pixel = data[w*(y+1)+x]
      right_pixel = data[w*y+(x+1)]
 
      #判断上下左右的黑色像素点总个数
      if top_pixel == 0:
        black_point += 1
      if left_pixel == 0:
        black_point += 1
      if down_pixel == 0:
        black_point += 1
      if right_pixel == 0:
        black_point += 1
      if black_point >= 3:
        im.putpixel((x,y),0)
      #print black_point
      black_point = 0
im.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python之dict(或对象)与json之间的互相转化实例

在Python语言中,json数据与dict字典以及对象之间的转化,是必不可少的操作。 在Python中自带json库。通过import json导入。 在json模块有2个方法, lo...

python的turtle库使用详解

python的turtle库使用详解

python中的turtle库是3.6版本中新推出的绘图工具库,那么如何使用呢?下面小编给大家分享一下。 首先打开pycharm软件,右键单击选择新建一个python file 接下来...

利用python实现.dcm格式图像转为.jpg格式

如下所示: import pydicom import matplotlib.pyplot as plt import scipy.misc import pandas as...

Python使用openpyxl读写excel文件的方法

这是一个第三方库,可以处理xlsx格式的Excel文件。pip install openpyxl安装。如果使用Aanconda,应该自带了。 读取Excel文件 需要导入相关函数。...

Python实现注册登录系统

Python实现注册登录系统

  表单在网页中主要负责数据采集功能。一个表单有三个基本组成部分: 表单标签:这里面包含了处理表单数据所用CGI程序的URL以及数据提交到服务器的方法。 表单域:包含了文本框、...