Python中的几种矩阵乘法(小结)

yipeiwu_com6年前Python基础

一.  np.dot()

1.同线性代数中矩阵乘法的定义。np.dot(A, B)表示:

  • 对二维矩阵,计算真正意义上的矩阵乘积。
  • 对于一维矩阵,计算两者的内积。

2.代码

 【code】

import numpy as np

# 2-D array: 2 x 3
two_dim_matrix_one = np.array([[1, 2, 3], [4, 5, 6]])
# 2-D array: 3 x 2
two_dim_matrix_two = np.array([[1, 2], [3, 4], [5, 6]])

two_multi_res = np.dot(two_dim_matrix_one, two_dim_matrix_two)
print('two_multi_res: %s' %(two_multi_res))

# 1-D array
one_dim_vec_one = np.array([1, 2, 3])
one_dim_vec_two = np.array([4, 5, 6])
one_result_res = np.dot(one_dim_vec_one, one_dim_vec_two)
print('one_result_res: %s' %(one_result_res))

 【result】

two_multi_res: [[22 28]
                [49 64]]
one_result_res: 32

二. np.multiply()或 *

1.在Python中,实现对应元素相乘(element-wise product),有2种方式,

  • 一个是np.multiply()
  • 另外一个是 *

2.代码

【code】

import numpy as np

# 2-D array: 2 x 3
two_dim_matrix_one = np.array([[1, 2, 3], [4, 5, 6]])
another_two_dim_matrix_one = np.array([[7, 8, 9], [4, 7, 1]])

# 对应元素相乘 element-wise product
element_wise = two_dim_matrix_one * another_two_dim_matrix_one
print('element wise product: %s' %(element_wise))

# 对应元素相乘 element-wise product
element_wise_2 = np.multiply(two_dim_matrix_one, another_two_dim_matrix_one)
print('element wise product: %s' % (element_wise_2))

【result】

element wise product: [[ 7 16 27]
                       [16 35  6]]
element wise product: [[ 7 16 27]
                       [16 35  6]]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python消除序列的重复值并保持顺序不变的实例

python 消除序列的重复值,并保持原来顺序 1、如果仅仅消除重复元素,可以简单的构造一个集合 $ python Python 3.5.2 (default, Nov 23 201...

Python3.5迭代器与生成器用法实例分析

Python3.5迭代器与生成器用法实例分析

本文实例讲述了Python3.5迭代器与生成器用法。分享给大家供大家参考,具体如下: 1、列表生成式 通过列表生成式可以直接创建一个列表。代码:a = [i*2 for i in ran...

在NumPy中创建空数组/矩阵的方法

如何在NumPy中创建空数组/矩阵? 在添加行的情况下,你最好的选择是创建一个与数据集最终一样大的数组,然后向它添加数据 row-by-row: >>> impo...

Python函数式编程实例详解

本文实例讲述了Python函数式编程。分享给大家供大家参考,具体如下: 函数式编程就是一种抽象程度很高的编程范式,从计算机硬件->汇编语言->C语言->Python抽象...

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

本文实例讲述了Python3.5基础之NumPy模块的使用。分享给大家供大家参考,具体如下: 1、简介 2、多维数组——ndarray...