Python实现K折交叉验证法的方法步骤

yipeiwu_com6年前Python基础

学习器在测试集上的误差我们通常称作“泛化误差”。要想得到“泛化误差”首先得将数据集划分为训练集和测试集。那么怎么划分呢?常用的方法有两种,k折交叉验证法和自助法。介绍这两种方法的资料有很多。下面是k折交叉验证法的python实现。

##一个简单的2折交叉验证
from sklearn.model_selection import KFold
import numpy as np
X=np.array([[1,2],[3,4],[1,3],[3,5]])
Y=np.array([1,2,3,4])
KF=KFold(n_splits=2) #建立4折交叉验证方法 查一下KFold函数的参数
for train_index,test_index in KF.split(X):
  print("TRAIN:",train_index,"TEST:",test_index)
  X_train,X_test=X[train_index],X[test_index]
  Y_train,Y_test=Y[train_index],Y[test_index]
  print(X_train,X_test)
  print(Y_train,Y_test)
#小结:KFold这个包 划分k折交叉验证的时候,是以TEST集的顺序为主的,举例来说,如果划分4折交叉验证,那么TEST选取的顺序为[0].[1],[2],[3]。

#提升
import numpy as np
from sklearn.model_selection import KFold
#Sample=np.random.rand(50,15) #建立一个50行12列的随机数组
Sam=np.array(np.random.randn(1000)) #1000个随机数
New_sam=KFold(n_splits=5)
for train_index,test_index in New_sam.split(Sam): #对Sam数据建立5折交叉验证的划分
#for test_index,train_index in New_sam.split(Sam): #默认第一个参数是训练集,第二个参数是测试集
  #print(train_index,test_index)
  Sam_train,Sam_test=Sam[train_index],Sam[test_index]
  print('训练集数量:',Sam_train.shape,'测试集数量:',Sam_test.shape) #结果表明每次划分的数量


#Stratified k-fold 按照百分比划分数据
from sklearn.model_selection import StratifiedKFold
import numpy as np
m=np.array([[1,2],[3,5],[2,4],[5,7],[3,4],[2,7]])
n=np.array([0,0,0,1,1,1])
skf=StratifiedKFold(n_splits=3)
for train_index,test_index in skf.split(m,n):
  print("train",train_index,"test",test_index)
  x_train,x_test=m[train_index],m[test_index]
#Stratified k-fold 按照百分比划分数据
from sklearn.model_selection import StratifiedKFold
import numpy as np
y1=np.array(range(10))
y2=np.array(range(20,30))
y3=np.array(np.random.randn(10))
m=np.append(y1,y2) #生成1000个随机数
m1=np.append(m,y3)
n=[i//10 for i in range(30)] #生成25个重复数据

skf=StratifiedKFold(n_splits=5)
for train_index,test_index in skf.split(m1,n):
  print("train",train_index,"test",test_index)
  x_train,x_test=m1[train_index],m1[test_index]

Python中貌似没有自助法(Bootstrap)现成的包,可能是因为自助法原理不难,所以自主实现难度不大。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

opencv3/C++图像像素操作详解

opencv3/C++图像像素操作详解

RGB图像转灰度图 RGB图像转换为灰度图时通常使用: 进行转换,以下尝试通过其他对图像像素操作的方式将RGB图像转换为灰度图像。 #include<opencv2/open...

Django 批量插入数据的实现方法

项目需求:浏览器中访问django后端某一条url(如:127.0.0.1:8080/get_book/),实时朝数据库中生成一千条数据并将生成的数据查询出来,并展示到前端页面 view...

PyQt5每天必学之滑块控件QSlider

PyQt5每天必学之滑块控件QSlider

QSlider 是一个具有可来回拉动手柄的控件。有时使用滑块比输入数字或使用旋转框更方便。 在我们的例子中,我们将创建一个滑块和一个标签。标签显示图像。滑块将控制标签显示的图像。 #...

python2.7的flask框架之引用js&css等静态文件的实现方法

python2.7的flask框架之引用js&css等静态文件的实现方法

动态 web 应用也会需要静态文件,通常是 CSS 和 JavaScript 文件。理想状况下, 我们已经配置好 Web 服务器来提供静态文件,但是在开发中,Flask 也可以做到。 只...

Flask实现图片的上传、下载及展示示例代码

Flask实现图片的上传、下载及展示示例代码

用Flask处理图片非常容易,这一篇学习一下图片的上传、下载及展示。还是以实例代码演示为主。 首先,实现一个简单的上传(过程中未做任何处理,只是为了演示) 点击选择图片,输入李四:...