Tensorflow模型实现预测或识别单张图片

yipeiwu_com6年前Python基础

利用Tensorflow训练好的模型,图片进行预测和识别,并输出相应的标签和预测概率。

如果想要多张图片,可以进行批次加载和预测,这里仅用单张图片进行演示。

模型文件:

预测图片:

这里直接贴代码,都有注释,应该很好理解

import tensorflow as tf
import inference
 
image_size = 128 # 输入层图片大小
 
# 模型保存的路径和文件名
MODEL_SAVE_PATH = "model/"
MODEL_NAME = "model.ckpt"
 
# 加载需要预测的图片
image_data = tf.gfile.FastGFile("./data/test/d.png", 'rb').read()
 
# 将图片格式转换成我们所需要的矩阵格式,第二个参数为1,代表1维
decode_image = tf.image.decode_png(image_data, 1)
 
# 再把数据格式转换成能运算的float32
decode_image = tf.image.convert_image_dtype(decode_image, tf.float32)
 
# 转换成指定的输入格式形状
image = tf.reshape(decode_image, [-1, image_size, image_size, 1])
 
# 定义预测结果为logit值最大的分类,这里是前向传播算法,也就是卷积层、池化层、全连接层那部分
test_logit = inference.inference(image, train=False, regularizer=None)
 
# 利用softmax来获取概率
probabilities = tf.nn.softmax(test_logit)
 
# 获取最大概率的标签位置
correct_prediction = tf.argmax(test_logit, 1)
 
# 定义Savar类
saver = tf.train.Saver()
 
with tf.Session() as sess:
  sess.run((tf.global_variables_initializer(), tf.local_variables_initializer()))
 
  # 加载检查点状态,这里会获取最新训练好的模型
  ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
  if ckpt and ckpt.model_checkpoint_path:
    # 加载模型和训练好的参数
    saver.restore(sess, ckpt.model_checkpoint_path)
    print("加载模型成功:" + ckpt.model_checkpoint_path)
 
    # 通过文件名得到模型保存时迭代的轮数.格式:model.ckpt-6000.data-00000-of-00001
    global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
 
    # 获取预测结果
    probabilities, label = sess.run([probabilities, correct_prediction])
 
    # 获取此标签的概率
    probability = probabilities[0][label]
 
    print("After %s training step(s),validation label = %d, has %g probability" % (global_step, label, probability))
  else:
    print("模型加载失败!" + ckpt.model_checkpoint_path)

运行输出结果:

(标签为3,概率为0.984478)

标签字典:

3对应小写d,识别正确。

其他的图片的预测结果:

预测图片1:

标签字典:

图片1,识别结果为1,可能概率0.993034

识别结果还是挺好看的,不知道是不是过拟合了,还是迭代次数不够多,还需要调整调整。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python的净值数据接口调用示例分享

代码描述:基于Python的净值数据接口调用代码实例 关联数据:净值数据 接口地址:https://www.juhe.cn/docs/api/id/25 #!/usr/bin/pyt...

Python 判断图像是否读取成功的方法

大批量处理数据时,若因个别图像错误导致代码中断,从头再来比较浪费时间 对未成功读入的图像跳过(读图 import cv2) for i in range(1,1000): imag...

运动检测ViBe算法python实现代码

运动检测ViBe算法python实现代码

运动物体检测一般分为背景建模和运动物体分析两步。即构建不包含运动物体的背景模型。然后将新的视频帧和背景模型对比,找出其中的运动物体。目前比较好的背景建模算法有两种:1)文章(Zivkov...

python保存数据到本地文件的方法

1、保存列表为.txt文件 #1/list写入txt ipTable = ['158.59.194.213', '18.9.14.13', '58.59.14.21'] file...

利用Hyperic调用Python实现进程守护

利用Hyperic调用Python,实现进程守护,供大家参考,具体内容如下 调用操作系统方法获取进程信息,判断进程是否存在,Linux和Windows均支持,区别在于获取进程信息和启动...