python实现几种归一化方法(Normalization Method)

yipeiwu_com6年前Python基础

数据归一化问题是数据挖掘中特征向量表达时的重要问题,当不同的特征成列在一起的时候,由于特征本身表达方式的原因而导致在绝对数值上的小数据被大数据“吃掉”的情况,这个时候我们需要做的就是对抽取出来的features vector进行归一化处理,以保证每个特征被分类器平等对待。下面我描述几种常见的Normalization Method,并提供相应的python实现(其实很简单):

1、(0,1)标准化:

这是最简单也是最容易想到的方法,通过遍历feature vector里的每一个数据,将Max和Min的记录下来,并通过Max-Min作为基数(即Min=0,Max=1)进行数据的归一化处理:


LaTex:{x}_{normalization}=\frac{x-Min}{Max-Min}

Python实现:

def MaxMinNormalization(x,Max,Min):
	x = (x - Min) / (Max - Min);
	return x;

找大小的方法直接用np.max()和np.min()就行了,尽量不要用python内建的max()和min(),除非你喜欢用List管理数字。

2、Z-score标准化:

这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,标准差为1,这里的关键在于复合标准正态分布,个人认为在一定程度上改变了特征的分布,关于使用经验上欢迎讨论,我对这种标准化不是非常地熟悉,转化函数为:


LaTex:{x}_{normalization}=\frac{x-\mu }{\sigma }

Python实现:

def Z_ScoreNormalization(x,mu,sigma):
	x = (x - mu) / sigma;
	return x;

这里一样,mu(即均值)用np.average(),sigma(即标准差)用np.std()即可。

3、Sigmoid函数

Sigmoid函数是一个具有S形曲线的函数,是良好的阈值函数,在(0, 0.5)处中心对称,在(0, 0.5)附近有比较大的斜率,而当数据趋向于正无穷和负无穷的时候,映射出来的值就会无限趋向于1和0,是个人非常喜欢的“归一化方法”,之所以打引号是因为我觉得Sigmoid函数在阈值分割上也有很不错的表现,根据公式的改变,就可以改变分割阈值,这里作为归一化方法,我们只考虑(0, 0.5)作为分割阈值的点的情况:


LaTex:{x}_{normalization}=\frac{1}{1+{e}^{-x}}

Python实现:

def sigmoid(X,useStatus):
	if useStatus:
		return 1.0 / (1 + np.exp(-float(X)));
	else:
		return float(X);

这里useStatus管理是否使用sigmoid的状态,方便调试使用。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django应用程序中如何发送电子邮件详解

Django应用程序中如何发送电子邮件详解

前言 在Django应用程序中发送电子邮件最常见的用例是密码重置、帐户激活和发送与您的应用程序相关的一般通知。下面来看看详细的介绍吧。 配置Django发送电子邮件 要配置您的Djang...

Python 基于wxpy库实现微信添加好友功能(简洁)

Python 基于wxpy库实现微信添加好友功能(简洁)

Github:https://github.com/Lyo-hub/wxpy_AddFriend 本程序为基于wxpy库实现的。 1.打开cmd导入一下库。 2.修改库文件中ad...

使用Python脚本将绝对url替换为相对url的教程

公司一个项目需要上传图片,一开始同事将图片上传后结合当前主机拼成了一个绝对的URL(http://192.168.1.1:888/m/getimg?filename=xxx.jp...

Django框架基础模板标签与filter使用方法详解

Django框架基础模板标签与filter使用方法详解

本文实例讲述了Django框架基础模板标签与filter使用方法。分享给大家供大家参考,具体如下: 一、基本的模板语言 1、变量 {{ }} 1.1、进入Django shell 环境...

Python多维/嵌套字典数据无限遍历的实现

最近拾回Django学习,实例练习中遇到了对多维字典类型数据的遍历操作问题,Google查询没有相关资料…毕竟是新手,到自己动手时发现并非想象中简单,颇有两次曲折才最终实现效果,将过程记...