python选取特定列 pandas iloc,loc,icol的使用详解(列切片及行切片)

yipeiwu_com6年前Python基础

df是一个dataframe,列名为A B C D

具体值如下:

A B C D
0 ss 小红 8
1 aa 小明 d
4 f f
6 ak 小紫 7

dataframe里的属性是不定的,空值默认为NA。

一、选取标签为A和C的列,并且选完类型还是dataframe

df = df.loc[:, ['A', 'C']]
df = df.iloc[:, [0, 2]]

二、选取标签为C并且只取前两行,选完类型还是dataframe

df = df.loc[0:2, ['A', 'C']] 
df = df.iloc[0:2, [0, 2]] 

聪明的朋友已经看出iloc和loc的不同了:loc是根据dataframe的具体标签选取列,而iloc是根据标签所在的位置,从0开始计数。

","前面的":"表示选取整列,第二个示例中的的0:2表示选取第0行到第二行,这里的0:2相当于[0,2)前闭后开,2是不在范围之内的。

需要注意的是,如果是df = df.loc[0:2, ['A', 'C']]或者df = df.loc[0:2, ['A', 'C']],切片之后类型依旧是dataframe,不能直接进行

加减乘除等操作的,比如dataframe的一列是数学成绩(shuxue),另一列为语文成绩(yuwen),现在需要求两门课程的总和。可以使用df['shuxue'] + df['yuwen'](选取完之后类型为series)来获得总分,而不能使用df.iloc[:,[2]]+df.iloc[:,[1]]或df.iloc[:,['shuxue']]+df.iloc[:,['yuwen']],这会产生错误结果。

还有一种方式是使用df.icol(i)来选取列,选取完的也不是dataframe而是series,i为该列所在的位置,从0开始计数。

如果你想要选取某一行的数据,可以使用df.loc[[i]]或者df.iloc[[i]]。

以上这篇python选取特定列 pandas iloc,loc,icol的使用详解(列切片及行切片)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

在python 中实现运行多条shell命令

使用py时可能需要连续运行多条shell 命令 1. # coding: UTF-8 import sys reload(sys) sys.setdefaultencoding('u...

Python统计纯文本文件中英文单词出现个数的方法总结【测试可用】

本文实例讲述了Python统计纯文本文件中英文单词出现个数的方法。分享给大家供大家参考,具体如下: 第一版: 效率低 # -*- coding:utf-8 -*- #!python3...

python3 拼接字符串的7种方法

Python的3.0版本,常被称为Python 3000,或简称Py3k。相对于Python的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0在设计的时候没有考虑...

NumPy中的维度Axis详解

NumPy中的维度Axis详解

浅谈NumPy中的维度Axis NumPy中的维度是一个很重要的概念,很多函数的参数都需要给定维度Axis,如何直观的理解维度呢?我们首先以二维数组为例进行说明,然后推广到多维数组。 (...

python中的print()输出

1.普通的输出: print(str)#str是任意一个字符串,数字··· 2.格式化输出: print('1,2,%s,%d'%('asd',4)) 1,2,asd,4 与C语...