python读取大文件越来越慢的原因与解决

yipeiwu_com6年前Python基础

背景:

今天同事写代码,用python读取一个四五百兆的文件,然后做一串逻辑上很直观的处理。结果处理了一天还没有出来结果。问题出在哪里呢?

解决:

1. 同事打印了在不同时间点的时间,在需要的地方插入如下代码:

print time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())) 

发现一个规律,执行速度到后面时间越来越长,也就是处理速度越来越慢。

2. 为什么会越来越慢呢?

1)可能原因1,GC 的问题,有篇文章里面写,python list append 的时候会越来越慢,解决方案是禁止GC:

使用 gc.disable()和gc.enable()

 2)改完上面,仍然不行,然后看到一篇文章里面写,可能是因为 git 导致的,因为append 的时候 git 会不断同步,会出问题,于是删除 .git 文件夹,结果还是不行。

3)继续查询,发下一个及其有可能出问题的地方。dict 的 in dict.key(),判断 key 是否在 dict 里面,这个的效率是非常低的。看到一篇文章比较了效率:

          ① 使用  in dict.keys() 效率:

          ② 使用 has_key()  效率:


发现 has_key() 效率比较稳定。于是修改,问题解决。

后话:

最初的时候,的确是使用 has_key(), 结果后面上传代码的时候,公司代码检查过不了,提示不能使用这个函数,只能改成 in dict.key() 这种方式,为什么公司不让这么传呢?经过一番百度,发现原因所在:在 python3 中,直接将 has_key() 函数给删除了,所以禁止使用。那禁止了该怎么办呢?原来 python 中 in 很智能,能自动判断 key 是否在字典中存在。所以最正规的做法不是 has_key(),   更不是 in dict.keys(), 而是 in dict.  判断 key 在 map 中,千万别用 in dict.keys() !!!

附录:

in、 in dict.keys()、 has_key() 方法实战对比:

>>> a = {'name':"tom", 'age':10, 'Tel':110}
>>> a
{'age': 10, 'Tel': 110, 'name': 'tom'}
>>> print 'age' in a
True
>>> print 'age' in a.keys()
True
>>>
>>> print a.has_key("age")
True

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对【听图阁-专注于Python设计】的支持。

参考资料:

https://www.douban.com/group/topic/44472300/

http://www.it1352.com/225441.html

/post/145424.htm

相关文章

Python操作SQLite数据库的方法详解【导入,创建,游标,增删改查等】

本文实例讲述了Python操作SQLite数据库的方法。分享给大家供大家参考,具体如下: SQLite简介 SQLite,是一款轻型的数据库,是遵守ACID的关系型数据库管理系统,它包含...

python通过Windows下远程控制Linux系统

python通过Windows下远程控制Linux系统

一、学习目标 【通过Windows下远程控制Linux系统实现对socket模块认识】 二、实验环境 Windows下(模拟客户端 [ IP:192.168.43.87 ] ):pyth...

Flask-WTF表单的使用方法

flask_wtf是flask框架的表单验证模块,可以很方便生成表单,也可以当做json数据交互的验证工具,支持热插拔。 安装 pip install Flask-WTF Fla...

在Python中如何传递任意数量的实参的示例代码

1 用法 在定义函数时,加上这样一个形参 "*形参名",就可以传递任意数量的实参啦: def make_tags(* tags): '''为书本打标签''' print('标...

浅析Python3 pip换源问题

pip安装源 背景# 在实际开发中, 可能要大量使用第三方模块(包), 更换至国内下载源, 可大幅提升下载速度 """ 1、采用国内源,加速下载模块的速度 2、常用pip源:...