python matplotlib库绘制条形图练习题

yipeiwu_com6年前Python基础

练习一:假设你获取到了2017年内地电影票房前20的电影(列表a)和电影票房数据(列表b),那么如何更加直观的展示该数据?

a = ["战狼2","速度与激情8","功夫瑜伽","西游伏妖篇","变形金刚5:最后的骑士","摔跤吧!爸爸","加勒比海盗5:死无对证","金刚:骷髅岛","极限特工:终极回归","生化危机6:终章","乘风破浪","神偷奶爸3","智取威虎山","大闹天竺","金刚狼3:殊死一战","蜘蛛侠:英雄归来","悟空传","银河护卫队2","情圣","新木乃伊",]

b = [56.01,26.94,17.53,16.49,15.45,12.96,11.8,11.61,11.28,11.12,10.49,10.3,8.75,7.55,7.32,6.99,6.88,6.86,6.58,6.23]

from matplotlib import pyplot as plt
import matplotlib

"""绘制条形图"""
font = {'family': 'MicroSoft YaHei'}
matplotlib.rc('font', **font) # 使支持中文

x = ["战狼2","速度与激情8","功夫瑜伽","西游伏妖篇","变形金刚5:最后的骑士","摔跤吧!爸爸","加勒比海盗5:死无对证","金刚:骷髅岛","极限特工:终极回归","生化危机6:终章","乘风破浪","神偷奶爸3","智取威虎山","大闹天竺","金刚狼3:殊死一战","蜘蛛侠:英雄归来","悟空传","银河护卫队2","情圣","新木乃伊",]

y = [56.01,26.94,17.53,16.49,15.45,12.96,11.8,11.61,11.28,11.12,10.49,10.3,8.75,7.55,7.32,6.99,6.88,6.86,6.58,6.23]

plt.figure(figsize=(20, 8), dpi=80) # 设置图形大小

# plt.bar(range(len(x)), y, width=0.3) # 绘制条形图,线条宽度
plt.barh(range(len(x)), y, height=0.3, color='orange') # 绘制横着的条形图,横着的用height控制线条宽度
# 设置字符串到x轴
plt.yticks(range(len(x)),x)

plt.grid(alpha=0.3) # 添加网格
plt.ylabel('电影名称')
plt.xlabel('票房')
plt.title('票房前20的电影')

plt.show()

效果图

练习二:假设知道了列表a中电影分别在2017-09-14(b_14),2017-09-15(b_15),2017-09-16(b_16)三天的票房,为了展示列表中电影本身的票房以及同其它电影的数据对比情况,应该如何更加直观的呈现数据?
a = ["猩球崛起3:终极之战","敦刻尔克","蜘蛛侠:英雄归来","战狼2"]
b_16 = [15746,312,4497,319]
b_15 = [12357,156,2045,168]
b_14 = [2358,399,2358,362]

from matplotlib import pyplot as plt
import matplotlib

font = {'family': 'MicroSoft YaHei'}
matplotlib.rc('font', **font) # 使支持中文

a = ["猩球崛起3:终极之战","敦刻尔克","蜘蛛侠:英雄归来","战狼2"]
b_16 = [15746,312,4497,319]
b_15 = [12357,156,2045,168]
b_14 = [2358,399,2358,362]

bar_width = 0.2 # 绘制多个条形图,这里不能大于0.3
# 让后两个条形,向后移动一个bar_width
x_14 = list(range(len(a)))
x_15 = [i+bar_width for i in x_14]
x_16 = [i+2*bar_width for i in x_14]

plt.figure(figsize=(20, 8), dpi=80) # 设置图形大小
plt.xticks(x_15, a) # 设置x轴刻度

plt.bar(range(len(a)), b_14, width=bar_width, label='9月14日')
plt.bar(x_15, b_15, width=bar_width, label='9月15日')
plt.bar(x_16, b_16, width=bar_width, label='9月16日')

plt.legend() # 设置图例
plt.xlabel('电影名称')
plt.ylabel('票房/万')
plt.title('对比票房')
plt.savefig('./02.png')
plt.show()

效果图

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python字典对象实现原理详解

Python字典对象实现原理详解

字典类型是Python中最常用的数据类型之一,它是一个键值对的集合,字典通过键来索引,关联到相对的值,理论上它的查询复杂度是 O(1) : >>> d = {'a'...

目前最全的python的就业方向

目前最全的python的就业方向

Python是一门面向对象的编程语言,编译速度超快,从诞生到现在已经25个年头了。它具有丰富和强大的库,常被称为“胶水语言”,能够把用其他语言编写的各种模块(尤其是C/C++)很轻松地联...

使用TensorFlow实现简单线性回归模型

使用TensorFlow实现简单线性回归模型

本文使用TensorFlow实现最简单的线性回归模型,供大家参考,具体内容如下 线性拟合y=2.7x+0.6,代码如下: import tensorflow as tf import...

对python Tkinter Text的用法详解

1.设置python Tkinter Text控件文本的方法 text.insert(index,string)  index = x.y的形式,x表示行,y表示列 向第一行插...

PyTorch的自适应池化Adaptive Pooling实例

PyTorch的自适应池化Adaptive Pooling实例

简介 自适应池化Adaptive Pooling是PyTorch含有的一种池化层,在PyTorch的中有六种形式: 自适应最大池化Adaptive Max Pooling: torch....