在Pytorch中使用样本权重(sample_weight)的正确方法

yipeiwu_com6年前Python基础

step:

1.将标签转换为one-hot形式。

2.将每一个one-hot标签中的1改为预设样本权重的值

即可在Pytorch中使用样本权重。

eg:

对于单个样本:loss = - Q * log(P),如下:

P = [0.1,0.2,0.4,0.3]
Q = [0,0,1,0]
loss = -Q * np.log(P)

增加样本权重则为loss = - Q * log(P) *sample_weight

P = [0.1,0.2,0.4,0.3]
Q = [0,0,sample_weight,0]
loss_samle_weight = -Q * np.log(P)

在pytorch中示例程序

train_data = np.load(open('train_data.npy','rb'))
train_labels = []
for i in range(8):
  train_labels += [i] *100
train_labels = np.array(train_labels)
train_labels = to_categorical(train_labels).astype("float32")
sample_1 = [random.random() for i in range(len(train_data))]
for i in range(len(train_data)):
  floor = i / 100
  train_labels[i][floor] = sample_1[i]
train_data = torch.from_numpy(train_data) 
train_labels = torch.from_numpy(train_labels) 
dataset = dataf.TensorDataset(train_data,train_labels) 
trainloader = dataf.DataLoader(dataset, batch_size=batch_size, shuffle=True)

对应one-target的多分类交叉熵损失函数如下:

def my_loss(outputs, targets):
  
  output2 = outputs - torch.max(outputs, 1, True)[0]
 
 
  P = torch.exp(output2) / torch.sum(torch.exp(output2), 1,True) + 1e-10
 
 
  loss = -torch.mean(targets * torch.log(P))
 
 
  return loss

以上这篇在Pytorch中使用样本权重(sample_weight)的正确方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现向ppt文件里插入新幻灯片页面的方法

本文实例讲述了python实现向ppt文件里插入新幻灯片页面的方法。分享给大家供大家参考。具体实现方法如下: # -*- coding: UTF-8 -*- import win32...

Django中使用CORS实现跨域请求过程解析

跨域请求: 请求url包含协议、网址、端口,任何一种不同都是跨域请求。 1.安装cors模块 pip install django-cors-headers 2.添加应用 IN...

在Python中输入一个以空格为间隔的数组方法

很多时候要从键盘连续输入一个数组,并用空格隔开,Python中的实现方法如下: >>> str_in = input('请以空格为间隔连续输入一个数组:') 然后...

Python3.5多进程原理与用法实例分析

Python3.5多进程原理与用法实例分析

本文实例讲述了Python3.5多进程原理与用法。分享给大家供大家参考,具体如下: 进程类:Process 示例及代码: (1)创建函数作为单进程 #!/usr/bin/env...

Python使用post及get方式提交数据的实例

最近在使用Python的过程中,发现网上很少提到在使用post方式时,怎么传一个数组作为参数的示例,此处根据自己的实践经验,给出相关示例: 单纯的post请求: def http_p...