pytorch 模型可视化的例子

yipeiwu_com6年前Python基础

如下所示:

一. visualize.py

from graphviz import Digraph
import torch
from torch.autograd import Variable
 
 
def make_dot(var, params=None):
  """ Produces Graphviz representation of PyTorch autograd graph
  Blue nodes are the Variables that require grad, orange are Tensors
  saved for backward in torch.autograd.Function
  Args:
    var: output Variable
    params: dict of (name, Variable) to add names to node that
      require grad (TODO: make optional)
  """
  if params is not None:
    assert isinstance(params.values()[0], Variable)
    param_map = {id(v): k for k, v in params.items()}
 
  node_attr = dict(style='filled',
           shape='box',
           align='left',
           fontsize='12',
           ranksep='0.1',
           height='0.2')
  dot = Digraph(node_attr=node_attr, graph_attr=dict(size="12,12"))
  seen = set()
 
  def size_to_str(size):
    return '('+(', ').join(['%d' % v for v in size])+')'
 
  def add_nodes(var):
    if var not in seen:
      if torch.is_tensor(var):
        dot.node(str(id(var)), size_to_str(var.size()), fillcolor='orange')
      elif hasattr(var, 'variable'):
        u = var.variable
        name = param_map[id(u)] if params is not None else ''
        node_name = '%s\n %s' % (name, size_to_str(u.size()))
        dot.node(str(id(var)), node_name, fillcolor='lightblue')
      else:
        dot.node(str(id(var)), str(type(var).__name__))
      seen.add(var)
      if hasattr(var, 'next_functions'):
        for u in var.next_functions:
          if u[0] is not None:
            dot.edge(str(id(u[0])), str(id(var)))
            add_nodes(u[0])
      if hasattr(var, 'saved_tensors'):
        for t in var.saved_tensors:
          dot.edge(str(id(t)), str(id(var)))
          add_nodes(t)
  add_nodes(var.grad_fn)
  return dot

二. 使用步骤

import torch
from torch.autograd import Variable
from models import *
from visualize import make_dot
x = Variable(torch.rand(1, 3, 256, 256))
model = GeneratorUNet()
y = model(x)
g = make_dot(y)
g.view()

三. 效果展示

以上这篇pytorch 模型可视化的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现马耳可夫链算法实例分析

本文实例讲述了python实现马耳可夫链算法的方法。分享给大家供大家参考。具体分析如下: 在《程序设计实践》(英文名《The Practice of Programming》)的书中,第...

python2和python3实现在图片上加汉字的方法

python2和python3实现在图片上加汉字的方法

python2和python3实现在图片上加汉字,最主要的区别还是内部编码方式不一样导致的,在代码上表现为些许的差别。理解了内部编码原理也就不会遇到这些问题了,以下代码是在WIN10系统...

python将四元数变换为旋转矩阵的实例

如下所示: import numpy as np from autolab_core import RigidTransform # 写上用四元数表示的orientation和xy...

简单掌握Python的Collections模块中counter结构的用法

counter 是一种特殊的字典,主要方便用来计数,key 是要计数的 item,value 保存的是个数。 from collections import Counter >...

如何运行带参数的python脚本

如何运行带参数的python脚本

这篇文章主要介绍了如何运行带参数的python脚本,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 问题描述: 要执行python脚本,...