pytorch 模型可视化的例子

yipeiwu_com6年前Python基础

如下所示:

一. visualize.py

from graphviz import Digraph
import torch
from torch.autograd import Variable
 
 
def make_dot(var, params=None):
  """ Produces Graphviz representation of PyTorch autograd graph
  Blue nodes are the Variables that require grad, orange are Tensors
  saved for backward in torch.autograd.Function
  Args:
    var: output Variable
    params: dict of (name, Variable) to add names to node that
      require grad (TODO: make optional)
  """
  if params is not None:
    assert isinstance(params.values()[0], Variable)
    param_map = {id(v): k for k, v in params.items()}
 
  node_attr = dict(style='filled',
           shape='box',
           align='left',
           fontsize='12',
           ranksep='0.1',
           height='0.2')
  dot = Digraph(node_attr=node_attr, graph_attr=dict(size="12,12"))
  seen = set()
 
  def size_to_str(size):
    return '('+(', ').join(['%d' % v for v in size])+')'
 
  def add_nodes(var):
    if var not in seen:
      if torch.is_tensor(var):
        dot.node(str(id(var)), size_to_str(var.size()), fillcolor='orange')
      elif hasattr(var, 'variable'):
        u = var.variable
        name = param_map[id(u)] if params is not None else ''
        node_name = '%s\n %s' % (name, size_to_str(u.size()))
        dot.node(str(id(var)), node_name, fillcolor='lightblue')
      else:
        dot.node(str(id(var)), str(type(var).__name__))
      seen.add(var)
      if hasattr(var, 'next_functions'):
        for u in var.next_functions:
          if u[0] is not None:
            dot.edge(str(id(u[0])), str(id(var)))
            add_nodes(u[0])
      if hasattr(var, 'saved_tensors'):
        for t in var.saved_tensors:
          dot.edge(str(id(t)), str(id(var)))
          add_nodes(t)
  add_nodes(var.grad_fn)
  return dot

二. 使用步骤

import torch
from torch.autograd import Variable
from models import *
from visualize import make_dot
x = Variable(torch.rand(1, 3, 256, 256))
model = GeneratorUNet()
y = model(x)
g = make_dot(y)
g.view()

三. 效果展示

以上这篇pytorch 模型可视化的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现问号表达式(?)的方法

python中的and和or和其它语言的区别很大其它语言中的and和or都是返回bool类型的结果,python不是。它返回的是做and和or运算的其中一个值。那个值决定了这个表达式的值...

让你的Python代码实现类型提示功能

Python是一种动态类型语言,这意味着我们在编写代码的时候更为自由,但是与此同时IDE无法向静态类型语言那样分析代码,及时给我们相应的提示。为了解决这个问题,Python 3.6 新增...

连接pandas以及数组转pandas的方法

pandas转数组 np.array(pandas) 数组转pandas pandas.DataFrame(numpy) pandas连接,只是左右接上,不合并值 df...

python进阶_浅谈面向对象进阶

学了面向对象三大特性继承,多态,封装。今天我们看看面向对象的一些进阶内容,反射和一些类的内置函数。 一、isinstance和issubclass class Foo: pass...

Python入门教程4. 元组基本操作 原创

前面简单介绍了Python列表基本操作,这里再来简单讲述一下Python元组相关操作 >>> dir(tuple) #查看元组的属性和方法 ['__add__',...