Pytorch加载部分预训练模型的参数实例

yipeiwu_com6年前Python基础

前言

自从从深度学习框架caffe转到Pytorch之后,感觉Pytorch的优点妙不可言,各种设计简洁,方便研究网络结构修改,容易上手,比TensorFlow的臃肿好多了。对于深度学习的初学者,Pytorch值得推荐。今天主要主要谈谈Pytorch是如何加载预训练模型的参数以及代码的实现过程。

直接加载预选脸模型

如果我们使用的模型和预训练模型完全一样,那么我们就可以直接加载别人的模型,还有一种情况,我们在训练自己模型的过程中,突然中断了,但只要我们保存了之前的模型的参数也可以使用下面的代码直接加载我们保存的模型继续训练,不用从头开始。

model=DPN(*args, **kwargs)
model.load_state_dict(torch.load("DPN.pth"))

这样的加载方式是基于Pytorch使用的模型存储方法:

torch.save(DPN.state_dict(), "DPN.pth")

加载部分预训练模型参数

其实大多数时候我们根据自己的任物所提出的模型是在一些公开模型的基础上改变而来,其中公开模型的参数我们没有必要在从头开始训练,只要加载其训练好的模型参数即可,这样有助于提高训练的准确率和我们模型的泛化能力。

 model = DPN(num_init_features=64, k_R=96, G=32, k_sec=(3,4,20,3), inc_sec=(16,32,24,128), num_classes=1,decoder=args.decoder)
 http = {'url': 'http://data.lip6.fr/cadene/pretrainedmodels/dpn92_extra-b040e4a9b.pth'}
 pretrained_dict=model_zoo.load_url(http['url'])
 model_dict = model.state_dict()
 pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}#filter out unnecessary keys 
 model_dict.update(pretrained_dict)
 model.load_state_dict(model_dict)
 model = torch.nn.DataParallel(model).cuda()

因为需要删除预训练模型中不匹配的的键,也就是层的名字。

以上这篇Pytorch加载部分预训练模型的参数实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python基础教程之分支、循环简单用法

本文实例讲述了python分支、循环简单用法。分享给大家供大家参考,具体如下: 讲程序设计,不得不讲到顺序、分支、循环。 顺序就是从上到下运行代码,这个很简单,不用再说了。 在讲分支、循...

解决使用PyCharm时无法启动控制台的问题

问题: 使用PyCharm时无法启动控制台? 今天打开PyCharm时突然无法启动控制台,IPython和Python本身都无法使用 解决: 很有可能你安装了较高版本的ipython...

查看端口并杀进程python脚本代码

我就废话不多说,直接上代码吧: # -*- coding: utf-8 -*- import os out=os.system('netstat -aon|findstr "25"'...

python实现下载文件的三种方法

Python开发中时长遇到要下载文件的情况,最常用的方法就是通过Http利用urllib或者urllib2模块。 当然你也可以利用ftplib从ftp站点下载文件。此外Python还提...

python解析json串与正则匹配对比方法

现在有如下格式的json串: “detail_time”:”2016-03-30 16:00:00”,”device_id”:”123456”,”os”:”Html5Wap”,”s...