浅析PyTorch中nn.Linear的使用

yipeiwu_com6年前Python基础

查看源码

Linear 的初始化部分:

class Linear(Module):
 ...
 __constants__ = ['bias']
 
 def __init__(self, in_features, out_features, bias=True):
   super(Linear, self).__init__()
   self.in_features = in_features
   self.out_features = out_features
   self.weight = Parameter(torch.Tensor(out_features, in_features))
   if bias:
     self.bias = Parameter(torch.Tensor(out_features))
   else:
     self.register_parameter('bias', None)
   self.reset_parameters()
 ...
 

需要实现的内容:

计算步骤:

@weak_script_method
  def forward(self, input):
    return F.linear(input, self.weight, self.bias)

返回的是:input * weight + bias

对于 weight

weight: the learnable weights of the module of shape
  :math:`(\text{out\_features}, \text{in\_features})`. The values are
  initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
  :math:`k = \frac{1}{\text{in\_features}}`

对于 bias

bias:  the learnable bias of the module of shape :math:`(\text{out\_features})`.
    If :attr:`bias` is ``True``, the values are initialized from
    :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
    :math:`k = \frac{1}{\text{in\_features}}`

实例展示

举个例子:

>>> import torch
>>> nn1 = torch.nn.Linear(100, 50)
>>> input1 = torch.randn(140, 100)
>>> output1 = nn1(input1)
>>> output1.size()
torch.Size([140, 50])
 

张量的大小由 140 x 100 变成了 140 x 50

执行的操作是:

[140,100]×[100,50]=[140,50]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python读取ini配置的类封装代码实例

这篇文章主要介绍了python读取ini配置的类封装代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 此为基础封装,未考虑过多异...

Python中取整的几种方法小结

前言 对每位程序员来说,在编程过程中数据处理是不可避免的,很多时候都需要根据需求把获取到的数据进行处理,取整则是最基本的数据处理。取整的方式则包括向下取整、四舍五入、向上取整等等。下面就...

Python实现查找匹配项作处理后再替换回去的方法

本文实例讲述了Python实现查找匹配项作处理后再替换回去的方法。分享给大家供大家参考,具体如下: 这里实现Python在对找到的匹配项进行适当处理后,再替换掉原来那个匹配的项。 #...

Python合并字典键值并去除重复元素的实例

假设在python中有一字典如下: x={‘a':'1,2,3', ‘b':'2,3,4'} 需要合并为: x={‘c':'1,2,3,4'} 需要做到三件事: 1. 将字符串转化为数...

Python基于高斯消元法计算线性方程组示例

本文实例讲述了Python基于高斯消元法计算线性方程组。分享给大家供大家参考,具体如下: #!/usr/bin/env python # coding=utf-8 # 以上的信息随自...