解决pytorch GPU 计算过程中出现内存耗尽的问题

yipeiwu_com6年前Python基础

Pytorch GPU运算过程中会出现:“cuda runtime error(2): out of memory”这样的错误。通常,这种错误是由于在循环中使用全局变量当做累加器,且累加梯度信息的缘故,用官方的说法就是:"accumulate history across your training loop"。在默认情况下,开启梯度计算的Tensor变量是会在GPU保持他的历史数据的,所以在编程或者调试过程中应该尽力避免在循环中累加梯度信息。

下面举个栗子:

上代码:

total_loss=0
for i in range(10000):
  optimizer.zero_grad()
  output=model(input)
  loss=criterion(output)
  loss.backward()
  optimizer.step()
  total_loss+=loss
  #这里total_loss是跨越循环的变量,起着累加的作用,
  #loss变量是带有梯度的tensor,会保持历史梯度信息,在循环过程中会不断积累梯度信息到tota_loss,占用内存

以上例子的修正方法是在循环中的最后一句修改为:total_loss+=float(loss),利用类型变换解除梯度信息,这样,多次累加不会累加梯度信息。

局部变量逗留导致内存泄露

局部变量通常在变量作用域之外会被Python自动销毁,在作用域之内,不需要的临时变量可以使用del x来销毁。

在设计Linear Layers 的时候,尽量让其规模小点

对于nn.Linear(m,n)这样规模的线性函数,他的空间规模为O(mn),除此规模的空间来容纳参数意外,还需要同样规模的空间来存储梯度,由此很容易造成GPU空间溢出。

相关的进程管理bash cmd

nvidia-smi监控GPU,

watch -n 1 nvidia-smi实时监控GPU,

watch -n 1 lscpu实时监控CPU,

ps -elf进程查看,

ps -elf | grep python查看Python子进程,

kill -9 [PID]杀死进程PID。

Referance:

Pytorch documentations

以上这篇解决pytorch GPU 计算过程中出现内存耗尽的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

利用Pandas读取文件路径或文件名称包含中文的csv文件方法

利用Pandas读取文件路径或文件名称包含中文的csv文件方法

利用Pandas的read_csv函数导入数据文件时,若文件路径或文件名包含中文,会报错,无法导入: import pandas as pd df=pd.read_csv('E:/学...

Python两个字典键同值相加的几种方法

两个字典A = {'a': 1, 'b': 2, 'c': 3}, B = {'b': 4, 'c': 6, 'd': 8} 要合并这两个字典,键值同则相加。 两个字典如果不考虑键相同则...

Python实现ssh批量登录并执行命令

局域网内有一百多台电脑,全部都是linux操作系统,所有电脑配置相同,系统完全相同(包括用户名和密码),ip地址是自动分配的。现在有个任务是在这些电脑上执行某些命令,者说进行某些操作,比...

对tensorflow 的模型保存和调用实例讲解

我们通常采用tensorflow来训练,训练完之后应当保存模型,即保存模型的记忆(权重和偏置),这样就可以来进行人脸识别或语音识别了。 1.模型的保存 # 声明两个变量 v1 = t...

如何利用python制作时间戳转换工具详解

前言: 时间戳的定义 Unix时间戳(Unix时间戳)或称Unix时间(Unix时间),POSIX时间(POSIX时间),是一种时间表示方式,定义为从格林威治时间1970年01月01日0...