python并发编程 Process对象的其他属性方法join方法详解

yipeiwu_com5年前Python基础

一 Process对象的join方法

在主进程运行过程中如果想并发地执行其他的任务,我们可以开启子进程,此时主进程的任务与子进程的任务分两种情况

情况一:

在主进程的任务与子进程的任务彼此独立的情况下,主进程的任务先执行完毕后,主进程还需要等待子进程执行完毕,然后统一回收资源。 这种是没有join方法

情况二:

如果主进程的任务在执行到某一个阶段时,需要等待子进程执行完毕后才能继续执行,

就需要有一种机制能够让主进程检测子进程是否运行完毕,在子进程执行完毕后才继续执行,否则一直在原地阻塞,这就是join方法的作用

让主进程等着,所有子进程执行完毕后,主进程才继续执行

from multiprocessing import Process
import time
import os
def task():
  print("%s is running,parent id is <%s>" % (os.getpid(), os.getppid()))
  time.sleep(3)
  print("%s is done,parent id is <%s>" % (os.getpid(), os.getppid()))
if __name__ == "__main__":
  t = Process(target=task, )
  t.start()
  t.join()
  # 主进程 等子进程执行完了
  print("主", os.getpid(), os.getppid())
'''
is running,parent id is <25956>
is done,parent id is <25956>
主 25956 2992
'''

子进程运行完,最后打印主进程,主进程结束了 所有僵尸进程都会回收

开启多个字进程 向操作系统发送信号,但操作系统要处理的任务太多了,先开启 哪个子进程是随机的,有时候可能先开启主进程先,

操作系统什么时候开,开多长时间,我们是不知道的

from multiprocessing import Process
import time
import os
def task(name):
  print('%s is running' %name)
  time.sleep(2)
  print('%s is end' %name)
if __name__ == '__main__':
  p1 = Process(target=task, args=('子进程1',))
  p2 = Process(target=task, args=('子进程2',))
  p3 = Process(target=task, args=('子进程3',))
  p4 = Process(target=task, args=('子进程4',))
  p1.start()
  p2.start()
  p3.start()
  p4.start()
  print('主',os.getpid(),os.getppid())
'''
子进程1 is running
子进程2 is running
主 9268 5236
子进程3 is running
子进程4 is running
子进程1 is end
子进程2 is end
子进程3 is end
子进程4 is end

'''

也有可能这样,先开启主进程,

主 9556 5236
子进程1 is running
子进程3 is running
子进程2 is running
子进程4 is running
子进程1 is end
子进程3 is end
子进程2 is end
子进程4 is end

p.start() 只是给操作系统发送信号

join 会变串行?

既然join是等待进程结束, 那么我像下面这样写, 进程不就又变成串行的了吗?
当然不是了, 必须明确:p.join()是让谁等?
很明显p.join()是让主线程等待p 子进程的结束,卡住的是主进程而绝非 子进程p,

from multiprocessing import Process
import time
import os
def task(name):
  print('%s is running' %(name))
  time.sleep(2)
  print('%s is end' %(name))
if __name__ == '__main__':
  p1 = Process(target=task, args=('子进程1',))
  p2 = Process(target=task, args=('子进程2',))
  p3 = Process(target=task, args=('子进程3',))
  p4 = Process(target=task, args=('子进程4',))
  p1.start()
  p2.start()
  p3.start()
  p4.start()
  p1.join()
  p2.join()
  p3.join()
  p4.join()
  print('主',os.getpid(),os.getppid())

详细解析如下:

进程只要start就会在开始运行了,所以p1-p4.start()时,系统中已经有四个并发的进程了

而我们p1.join()是在等p1结束,没错p1只要不结束主线程就会一直卡在原地,这也是问题的关键

join是让主线程等,而p1-p4仍然是并发执行的,p1.join的时候,其余p2,p3,p4仍然在运行,等#p1.join结束,可能p2,p3,p4早已经结束了,这样p2.join,p3.join.p4.join直接通过检测,无需等待

所以4个join花费的总时间仍然是耗费时间最长的那个进程运行的时间

所以不会是串行执行,是并发执行

4个join花费的总时间仍然是耗费时间最长的那个进程运行的时间

所以就是5秒,就是子进程1 那个等待的时间

from multiprocessing import Process
import time
import os
def task(name,n):
  print('%s is running' %(name))
  time.sleep(n)
  print('%s is end' %(name))
if __name__ == '__main__':
  start = time.time()
  p1 = Process(target=task, args=('子进程1',5))
  p2 = Process(target=task, args=('子进程2',2))
  p3 = Process(target=task, args=('子进程3',2))
  p4 = Process(target=task, args=('子进程4',2))
  p1.start()
  p2.start()
  p3.start()
  p4.start()
  p1.join()
  p2.join()
  p3.join()
  p4.join()
  print('主',time.time() - start)
'''
子进程1 is running
子进程2 is running
子进程3 is running
子进程4 is running
子进程2 is end
子进程3 is end
子进程4 is end
子进程1 is end
主 5.413309812545776
'''

这种方式就是串行

等子进程1执行时候,子进程2就没有发送信号,要等子进程1 执行完,再子进程2发送信号 ,开启子进程2再执行,按照这样的顺序

from multiprocessing import Process
import time
import os
def task(name,n):
  print('%s is running' %(name))
  time.sleep(n)
  print('%s is end' %(name))
if __name__ == '__main__':
  start = time.time()
  p1 = Process(target=task, args=('子进程1',5))
  p2 = Process(target=task, args=('子进程2',2))
  p3 = Process(target=task, args=('子进程3',2))
  p4 = Process(target=task, args=('子进程4',2))
  p1.start()
  p1.join()
  p2.start()
  p2.join()
  p3.start()
  p3.join()  
  p4.start()
  p4.join()
  print('主',time.time() - start)
'''
子进程1 is running
子进程1 is end
子进程2 is running
子进程2 is end
子进程3 is running
子进程3 is end
子进程4 is running
子进程4 is end
主 12.212698698043823

'''

上述启动进程与 join进程 可以简写为以下

from multiprocessing import Process
import time
import os
def task(name,n):
  print('%s is running' %(name))
  time.sleep(n)
  print('%s is end' %(name))
if __name__ == '__main__':
  start = time.time()
  p1 = Process(target=task, args=('子进程1',5))
  p2 = Process(target=task, args=('子进程2',2))
  p3 = Process(target=task, args=('子进程3',2))
  p4 = Process(target=task, args=('子进程4',2))
  process_list = [p1,p2,p3,p4]
  for p in process_list:
    p.start()
  for p in process_list:
    p.join()
  print('主',time.time() - start)

join 保证所有子进程执行完 主进程才能工作,不然一直阻塞

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

解决python3捕获cx_oracle抛出的异常错误问题

最近一直在用python写点监控oracle的程序,一直没有用到异常处理这一块,然后日常监控中一些错误笼统的抛出数据库连接异常,导致后续处理的时候无法及时定位问题。 于是早上抽点时间看了...

Python基于百度AI的文字识别的示例

Python基于百度AI的文字识别的示例

使用百度AI的文字识别库,做出的调用示例,其中filePath是图片的路径,可以自行传入一张带有文字的图片,进行识别。 下载baidu-aip这个库,可以直接使用pip下载:pip in...

django的ORM操作 增加和查询

ORM 对象关系映射 在数据库中,实现对数据的增删改查,使用的是SQ语句, 在django中,通过python代码,实现对数据库的增删改查,这就是ORM。 在python中,用类名 代表...

Python pandas RFM模型应用实例详解

Python pandas RFM模型应用实例详解

本文实例讲述了Python pandas RFM模型应用。分享给大家供大家参考,具体如下: 什么是RFM模型 根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有3个...

python实战教程之自动扫雷

python实战教程之自动扫雷

前言 自动扫雷一般分为两种,一种是读取内存数据,而另一种是通过分析图片获得数据,并通过模拟鼠标操作,这里我用的是第二种方式。 一、准备工作 1.扫雷游戏 我是win10,没有默认的扫...