Python数据可视化实现正态分布(高斯分布)

yipeiwu_com6年前Python基础

正态分布(Normal distribution)又成为高斯分布(Gaussian distribution)

若随机变量X服从一个数学期望为、标准方差为的高斯分布,记为:

则其概率密度函数为:

正态分布的期望值决定了其位置,其标准差决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是的正态分布:

概率密度函数

 

 

代码实现:

# Python实现正态分布
  # 绘制正态分布概率密度函数
  u = 0  # 均值μ
  u01 = -2
  sig = math.sqrt(0.2) # 标准差δ
  sig01 = math.sqrt(1)
  sig02 = math.sqrt(5)
  sig_u01 = math.sqrt(0.5)
  x = np.linspace(u - 3*sig, u + 3*sig, 50)
  x_01 = np.linspace(u - 6 * sig, u + 6 * sig, 50)
  x_02 = np.linspace(u - 10 * sig, u + 10 * sig, 50)
  x_u01 = np.linspace(u - 10 * sig, u + 1 * sig, 50)
  y_sig = np.exp(-(x - u) ** 2 /(2* sig **2))/(math.sqrt(2*math.pi)*sig)
  y_sig01 = np.exp(-(x_01 - u) ** 2 /(2* sig01 **2))/(math.sqrt(2*math.pi)*sig01)
  y_sig02 = np.exp(-(x_02 - u) ** 2 / (2 * sig02 ** 2)) / (math.sqrt(2 * math.pi) * sig02)
  y_sig_u01 = np.exp(-(x_u01 - u01) ** 2 / (2 * sig_u01 ** 2)) / (math.sqrt(2 * math.pi) * sig_u01)
  plt.plot(x, y_sig, "r-", linewidth=2)
  plt.plot(x_01, y_sig01, "g-", linewidth=2)
  plt.plot(x_02, y_sig02, "b-", linewidth=2)
  plt.plot(x_u01, y_sig_u01, "m-", linewidth=2)
  # plt.plot(x, y, 'r-', x, y, 'go', linewidth=2,markersize=8)
  plt.grid(True)
  plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

如何更改 pandas dataframe 中两列的位置

如何更改 pandas dataframe 中两列的位置

如何更改 pandas dataframe 中两列的位置: 把其中的某列移到第一列的位置。 原来的 df 是: df = pd.read_csv('I:/Papers/consume...

Python随机生成数模块random使用实例

代码 复制代码 代码如下: #!/usr/bin/env python #coding=utf-8 import random #生成[0, 1)直接随机浮点数 print random...

Python实现随机取一个矩阵数组的某几行

废话不多说了,直接上代码吧! import numpy as np array = np.array([0, 0]) for i in range(10): array =...

Python实现的文本简单可逆加密算法示例

本文实例讲述了Python实现的文本简单可逆加密算法。分享给大家供大家参考,具体如下: 其实很简单,就是把一段文本每个字符都通过某种方式改变(比如加1) 这样就实现了文本的加密操作,解密...

Python代码解决RenderView窗口not found问题

Python代码解决RenderView窗口not found问题

源起   Error:setParent: Object 'renderView' not found   这是一个在工作中很常见的问题,以前做特效的时候有10%的概率会碰到,多发生在打...