Python实现朴素贝叶斯的学习与分类过程解析

yipeiwu_com6年前Python基础

 概念简介:

朴素贝叶斯基于贝叶斯定理,它假设输入随机变量的特征值是条件独立的,故称之为“朴素”。简单介绍贝叶斯定理:

乍看起来似乎是要求一个概率,还要先得到额外三个概率,有用么?其实这个简单的公式非常贴切人类推理的逻辑,即通过可以观测的数据,推测不可观测的数据。举个例子,也许你在办公室内不知道外面天气是晴天雨天,但是你观测到有同事带了雨伞,那么可以推断外面八成在下雨。

若X 是要输入的随机变量,则Y 是要输出的目标类别。对X 进行分类,即使求的使P(Y|X) 最大的Y值。若X 为n 维特征变量 X = {A1, A2, …..An} ,若输出类别集合为Y = {C1, C2, …. Cm} 。

X 所属最有可能类别 y = argmax P(Y|X), 进行如下推导:

朴素贝叶斯的学习

有公式可知,欲求分类结果,须知如下变量:

各个类别的条件概率,

输入随机变量的特质值的条件概率

示例代码:

import copy

class native_bayes_t:
  
  def __init__(self, character_vec_, class_vec_):
    """
    构造的时候需要传入特征向量的值,以数组方式传入
    参数1 character_vec_ 格式为 [("character_name",["","",""])]
    参数2 为包含所有类别的数组 格式为["class_X", "class_Y"]
    """
    self.class_set = {}
    # 记录该类别下各个特征值的条件概率
    character_condition_per = {}
    for character_name in character_vec_:
      character_condition_per[character_name[0]] = {}
      for character_value in character_name[1]:
        character_condition_per[character_name[0]][character_value] = {
          'num'      : 0, # 记录该类别下该特征值在训练样本中的数量,
          'condition_per' : 0.0 # 记录该类别下各个特征值的条件概率
        }
    for class_name in class_vec:
      self.class_set[class_name] = {
        'num'           : 0, # 记录该类别在训练样本中的数量,
        'class_per'        : 0.0, # 记录该类别在训练样本中的先验概率,
        'character_condition_per' : copy.deepcopy(character_condition_per),
      }

    #print("init", character_vec_, self.class_set) #for debug

  def learn(self, sample_):
    """
    learn 参数为训练的样本,格式为
    [
      {
        'character' : {'character_A':'A1'}, #特征向量
        'class_name' : 'class_X'       #类别名称
      }
    ]
    """
    for each_sample in sample:
      character_vec = each_sample['character']
      class_name   = each_sample['class_name']

      data_for_class = self.class_set[class_name]
      data_for_class['num'] += 1

      # 各个特质值数量加1
      for character_name in character_vec:
        character_value = character_vec[character_name]
        data_for_character = data_for_class['character_condition_per'][character_name][character_value]

        data_for_character['num'] += 1

    # 数量计算完毕, 计算最终的概率值
    sample_num = len(sample)
    for each_sample in sample:
      character_vec = each_sample['character']
      class_name  = each_sample['class_name']

      data_for_class = self.class_set[class_name]
      # 计算类别的先验概率
      data_for_class['class_per'] = float(data_for_class['num']) / sample_num

      # 各个特质值的条件概率
      for character_name in character_vec:
        character_value = character_vec[character_name]
        
        data_for_character = data_for_class['character_condition_per'][character_name][character_value]

        data_for_character['condition_per'] = float(data_for_character['num']) / data_for_class['num']

    from pprint import pprint
    pprint(self.class_set) #for debug

  def classify(self, input_):
    """
      对输入进行分类,输入input的格式为
    {
      "character_A":"A1",
      "character_B":"B3",
    }
    """
    best_class = ''
    max_per  = 0.0
    for class_name in self.class_set:
      class_data = self.class_set[class_name]
      per = class_data['class_per']
      # 计算各个特征值条件概率的乘积
      for character_name in input_:
        character_per_data = class_data['character_condition_per'][character_name]
        per = per * character_per_data[input_[character_name]]['condition_per']
      print(class_name, per)
      if per >= max_per:
        best_class = class_name

    return best_class

character_vec = [("character_A",["A1","A2","A3"]), ("character_B",["B1","B2","B3"])]
class_vec   = ["class_X", "class_Y"]
bayes = native_bayes_t(character_vec, class_vec)


sample = [
      {
        'character' : {'character_A':'A1', 'character_B':'B1'}, #特征向量
        'class_name' : 'class_X'       #类别名称
      },
      {
        'character' : {'character_A':'A3', 'character_B':'B1'}, #特征向量
        'class_name' : 'class_X'       #类别名称
      },
      {
        'character' : {'character_A':'A3', 'character_B':'B3'}, #特征向量
        'class_name' : 'class_X'       #类别名称
      },
      {
        'character' : {'character_A':'A2', 'character_B':'B2'}, #特征向量
        'class_name' : 'class_X'       #类别名称
      },
      {
        'character' : {'character_A':'A2', 'character_B':'B2'}, #特征向量
        'class_name' : 'class_Y'       #类别名称
      },
      {
        'character' : {'character_A':'A3', 'character_B':'B1'}, #特征向量
        'class_name' : 'class_Y'       #类别名称
      },
      {
        'character' : {'character_A':'A1', 'character_B':'B3'}, #特征向量
        'class_name' : 'class_Y'       #类别名称
      },
      {
        'character' : {'character_A':'A1', 'character_B':'B3'}, #特征向量
        'class_name' : 'class_Y'       #类别名称
      },
      
    ]

input_data ={
  "character_A":"A1",
  "character_B":"B3",
}

bayes.learn(sample)
print(bayes.classify(input_data))

总结:

朴素贝叶斯分类实现简单,预测的效率较高

朴素贝叶斯成立的假设是个特征向量各个属性条件独立,建模的时候需要特别注意

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解flask表单提交的两种方式

一.通用方式 通用方式就是使用ajax或者$.post来提交。 前端html <form method="post" action="/mockservice" meth...

5个很好的Python面试题问题答案及分析

本文的主要内容是向大家分享几个Python面试中的T题目,同时给出了答案并对其进行分析,具体如下。 本文的原文是5 Great Python Interview Questions,同时...

OpenCV实现人脸识别

主要有以下步骤: 1、人脸检测 2、人脸预处理 3、从收集的人脸训练机器学习算法 4、人脸识别 5、收尾工作 人脸检测算法: 基于Haar的脸部检测器的基本思想是,对于面部正面大部分区域...

Python写一个基于MD5的文件监听程序

Python写一个基于MD5的文件监听程序

前述 写了一个基于MD5算法的文件监听程序,通过不同的文件能够生成不同的哈希函数,来实现实现判断文件夹中的文件的增加、修改、删除和过滤含有特定字符的文件名的文件。 需求说明 需要实现对...

python多线程与多进程及其区别详解

前言 个人一直觉得对学习任何知识而言,概念是相当重要的。掌握了概念和原理,细节可以留给实践去推敲。掌握的关键在于理解,通过具体的实例和实际操作来感性的体会概念和原理可以起到很好的效果。本...