在Python3 numpy中mean和average的区别详解

yipeiwu_com5年前Python基础

mean和average都是计算均值的函数,在不指定权重的时候average和mean是一样的。指定权重后,average可以计算一维的加权平均值。

具体如下:

import numpy as np
a = np.array([np.random.randint(0, 20, 5), np.random.randint(0, 20, 5)])
print('原始数据\n', a)
print('mean函数'.center(20, '*'))
print('对所有数据计算\n', a.mean())
print('axis=0,按行方向计算,即每列\n', a.mean(axis=0)) # 按行方向计算,即每列
print('axis=1,按列方向计算,即每行\n', a.mean(axis=1)) # 按列方向计算,即每行
print('average函数'.center(20, '*'))
print('对所有数据计算\n', np.average(a))
print('axis=0,按行方向计算,即每列\n', np.average(a, axis=0)) # 按行方向计算,即每列
print('axis=1,按列方向计算,即每行\n', np.average(a, axis=1)) # 按列方向计算,即每行
b = np.array([1, 2, 3, 4])
wts = np.array([4, 3, 2, 1])
print('不指定权重\n', np.average(b))
print('指定权重\n', np.average(b, weights=wts))

运行结果:

原始数据
 [[10 12 7 14 5]
 [12 10 2 16 7]]
*******mean函数*******
对所有数据计算
 9.5
axis=0,按行方向计算,即每列
 [ 11. 11. 4.5 15. 6. ]
axis=1,按列方向计算,即每行
 [ 9.6 9.4]
*****average函数******
对所有数据计算
 9.5
axis=0,按行方向计算,即每列
 [ 11. 11. 4.5 15. 6. ]
axis=1,按列方向计算,即每行
 [ 9.6 9.4]
不指定权重
 2.5
指定权重
 2.0

以上这篇在Python3 numpy中mean和average的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

对numpy的array和python中自带的list之间相互转化详解

a=([3.234,34,3.777,6.33]) a为python的list类型 将a转化为numpy的array: np.array(a) array([ 3.234,...

Python hashlib模块用法实例分析

本文实例讲述了Python hashlib模块用法。分享给大家供大家参考,具体如下: 一、hashlib基本使用 python中的hashlib模块用来进行hash或者md5加密,而且这...

Python-基础-入门 简介

Python简介及入门 python为什么是python 选择自己喜欢的语言,这往往不容易,更多的是根据需求 话说,之前是java,大学用了三年+实习半年,后来入职做测试开发后,碰到了p...

Python线程指南详细介绍

Python线程指南详细介绍

本文介绍了Python对于线程的支持,包括“学会”多线程编程需要掌握的基础以及Python两个线程标准库的完整介绍及使用示例。 注意:本文基于Python2.4完成,;如果看到不明白的词...

深入理解Django-Signals信号量

定义Signals Django自身提供了一些常见的signal,用户本身也可以定义自己需要的signal 定义signal很简单,只需要实例化一个Signal实例即可 实例化Sign...