关于Python中的向量相加和numpy中的向量相加效率对比

yipeiwu_com6年前Python基础

直接使用Python来实现向量的相加

# -*-coding:utf-8-*-
#向量相加
def pythonsum(n):
 a = range(n)
 b = range(n)
 c = []
 for i in range(len(a)):
  a[i] = i**2
  b[i] = i**3
  c.append(a[i]+b[i])
 return a,b,c

print pythonsum(4),type(pythonsum(4))
for arg in pythonsum(4):
 print arg

从这里这个输出结果可以看得出来,return多个值时,是以列表的形式返回的

([0, 1, 4, 9], [0, 1, 8, 27], [0, 2, 12, 36]) <type 'tuple'>
[0, 1, 4, 9]
[0, 1, 8, 27]
[0, 2, 12, 36]

使用numpy包实现两个向量的相加

def numpysum(n):
 a = np.arange(n) ** 2
 b = np.arange(n) ** 3
 c = a + b
 return a,b,c
(array([0, 1, 4, 9]), array([ 0, 1, 8, 27]), array([ 0, 2, 12, 36])) <type 'function'>
[0 1 4 9]
[ 0 1 8 27]
[ 0 2 12 36]

比较用Python实现两个向量相加和用numpy实现两个向量相加的情况

size = 1000
start = datetime.now()
c = pythonsum(size)
delta = datetime.now() - start
# print 'The last 2 elements of the sum',c[-2:]
print 'pythonSum elapsed time in microseconds',delta.microseconds

size = 1000
start1 = datetime.now()
c1 = numpysum(size)
delta1 = datetime.now() - start1
# print 'The last 2 elements of the sum',c1[-2:]
print 'numpySum elapsed time in microseconds',delta1.microseconds

从下面程序运行结果我们可以看到在处理向量是numpy要比Python计算高出不知道多少倍

pythonSum elapsed time in microseconds 1000
numpySum elapsed time in microseconds 0

以上这篇关于Python中的向量相加和numpy中的向量相加效率对比就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解Django模版中加载静态文件配置方法

1、settings.INSTALLED_APPS下添加:django.contrib.staticfiles 2、settings.py下添加:STATIC_URL = '/stati...

Python cx_freeze打包工具处理问题思路及解决办法

以下是在使用cx_freeze过程中遇到的问题及解决办法(Win7) 1.问题描述:运行exe,启动无数个主程序,导致系统无法使用     原因:在程序中使用了multiprocess...

wxPython定时器wx.Timer简单应用实例

wxPython定时器wx.Timer简单应用实例

本文实例讲述了wxPython定时器wx.Timer简单应用。分享给大家供大家参考。具体如下: # -*- coding: utf-8 -*- #################...

python列出目录下指定文件与子目录的方法

本文实例讲述了python列出目录下指定文件与子目录的方法。分享给大家供大家参考。具体实现方法如下: # if you know the exact name: import os...

对python中的 os.mkdir和os.mkdirs详解

创建目录 在Python中可以使用os.mkdir()函数创建目录(创建一级目录)。 其原型如下所示: os.mkdir(path) 其参数path 为要创建目录的路径。 例如要在...