详解Python 字符串相似性的几种度量方法

yipeiwu_com6年前Python基础

字符串的相似性比较应用场合很多,像拼写纠错、文本去重、上下文相似性等。

评价字符串相似度最常见的办法就是:把一个字符串通过插入、删除或替换这样的编辑操作,变成另外一个字符串,所需要的最少编辑次数,这种就是编辑距离(edit distance)度量方法,也称为Levenshtein距离。海明距离是编辑距离的一种特殊情况,只计算等长情况下替换操作的编辑次数,只能应用于两个等长字符串间的距离度量。

其他常用的度量方法还有 Jaccard distance、J-W距离(Jaro–Winkler distance)、余弦相似性(cosine similarity)、欧氏距离(Euclidean distance)等。

python-Levenshtein 使用

使用 pip install python-Levenshtein 指令安装 Levenshtein

# -*- coding: utf-8 -*-
 
import difflib
# import jieba
import Levenshtein
 
str1 = "我的骨骼雪白 也长不出青稞"
str2 = "雪的日子 我只想到雪中去si"
 
# 1. difflib
seq = difflib.SequenceMatcher(None, str1,str2)
ratio = seq.ratio()
print 'difflib similarity1: ', ratio
 
# difflib 去掉列表中不需要比较的字符
seq = difflib.SequenceMatcher(lambda x: x in ' 我的雪', str1,str2)
ratio = seq.ratio()
print 'difflib similarity2: ', ratio
 
# 2. hamming距离,str1和str2长度必须一致,描述两个等长字串之间对应位置上不同字符的个数
# sim = Levenshtein.hamming(str1, str2)
# print 'hamming similarity: ', sim
 
# 3. 编辑距离,描述由一个字串转化成另一个字串最少的操作次数,在其中的操作包括 插入、删除、替换
sim = Levenshtein.distance(str1, str2)
print 'Levenshtein similarity: ', sim
 
# 4.计算莱文斯坦比
sim = Levenshtein.ratio(str1, str2)
print 'Levenshtein.ratio similarity: ', sim
 
# 5.计算jaro距离
sim = Levenshtein.jaro(str1, str2 )
print 'Levenshtein.jaro similarity: ', sim
 
# 6. Jaro–Winkler距离
sim = Levenshtein.jaro_winkler(str1 , str2 )
print 'Levenshtein.jaro_winkler similarity: ', sim

输出:

difflib similarity1:  0.246575342466
difflib similarity2:  0.0821917808219
Levenshtein similarity:  33
Levenshtein.ratio similarity:  0.27397260274
Levenshtein.jaro similarity:  0.490208958959
Levenshtein.jaro_winkler similarity:  0.490208958959

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python中的decimal类型转换实例详解

[Python标准库]decimal——定点数和浮点数的数学运算         作用:使用定点数和浮点数的小数运算...

Python命名空间的本质和加载顺序

Python的命名空间是Python程序猿必须了解的内容,对Python命名空间的学习,将使我们在本质上掌握一些Python中的琐碎的规则。 接下来我将分四部分揭示Python命名空间的...

Python数据可视化教程之Matplotlib实现各种图表实例

Python数据可视化教程之Matplotlib实现各种图表实例

前言 数据分析就是将数据以各种图表的形式展现给领导,供领导做决策用,因此熟练掌握饼图、柱状图、线图等图表制作是一个数据分析师必备的技能。Python有两个比较出色的图表制作框架,分别是M...

python装饰器深入学习

什么是装饰器 在我们的软件产品升级时,常常需要给各个函数新增功能,而在我们的软件产品中,相同的函数可能会被调用上百次,这种情况是很常见的,如果我们一个个的修改,那我们的码农岂不要挂掉了(...

Python制作Windows系统服务

最近有个Python程序需要安装并作为Windows系统服务来运行,过程中碰到一些坑,整理了一下。 Python服务类 首先Python程序需要调用一些Windows系统API才能作为系...