python中几种自动微分库解析

yipeiwu_com5年前Python基础

前言

简单介绍下python的几个自动求导工具,tangent、autograd、sympy;

在各种机器学习、深度学习框架中都包含了自动微分,微分主要有这么四种:手动微分法、数值微分法、符号微分法、自动微分法,这里分别简单走马观花(hello world式)的介绍下下面几种微分框架;

sympy 强大的科学计算库,使用的是符号微分,通过生成符号表达式进行求导;求得的导数不一定为最简的,当函数较为复杂时所生成的表达式树异常复杂;

autograd自动微分先将符号微分用于基本的算子,带入数值并保存中间结果,后应用于整个函数;自动微分本质上就是图计算,容易做很多优化所以广泛应用于各种机器学习深度学习框架中;

tangent 为源到源(source-to-source)的自动微分框架,在计算函数f微分时他通过生成新函数f_grad来计算该函数的微分,与目前所存在的所有自动微分框架都有所不同;由于它是通过生成全新的函数来计算微分所以具有非常搞的可读性、可调式性这也是官方所说的与当前自动微分框架的重大不同;

sympy 求导

 def grad():
   # 定义表达式的变量名称
   x, y = symbols('x y')
   # 定义表达式
   z = x**2 +y**2
   # 计算z关于y对应的偏导数
   return diff(z, y)
 func = grad()

输出结果表达式z的导函数z‘=2*y

print(func) 

把y 等于6 带入计算 结果 为12

print(func.evalf(subs ={'y':3}))

Autograd求偏导

 import autograd.numpy as np
 from autograd import grad
 #表达式 f(x,y)=x^2+3xy+y^2
 #df/dx = 2x+3y
 #df/dy = 3x+2y
 #x=1,y=2
 #df/dx=8
 #df/dy=7
 def fun(x, y):
  z=x**2+3*x*y+y**2
  return z
 fun_grad = grad(fun)
 fun_grad(2.,1.)

输出:7.0

tangent求导

 import tangent
 def fun(x, y):
  z=x**2+3*x*y+y**2
  return z

默认为求z关于x的偏导数

dy_dx = tangent.grad(fun)

输出偏导数值为 8 ,z' = 2 * x,此处x传任何值都是一样的

df(4, y=1)

可通过使用wrt参数指定求关于某个参数的偏导数,下面为求z关于y的偏导数

df = tangent.grad(funs, wrt=([1]))

输出值为10 ,z' = 2 *y,此处x传任何值都是一样的

df(x=0, y=5)

上面说了那么多也没体现出tangent的核心:源到源(source-to-source)

在生成导函数的时候加入verbose=1参数,即可看到tangent为我们生成的用于计算导数的函数,默认情况下该值为0所以我们没感觉到tangent的求导与别的自动微分框架有什么区别;

 def df(x):
   z = x**2
   return z
 df = tangent.grad(df, verbose=1)
 df(x=2)

在执行完上述代码后,我们看到了tangent为我们所生成用于求导数的函数:

 def ddfdx(x, bz=1.0):
  z = x ** 2
  assert tangent.shapes_match(z, bz), 'Shape mismatch between return value (%s) and seed derivative (%s)' % (numpy.shape(z), numpy.shape(bz))
 # Grad of: z = x ** 2
 _bx = 2 * x * bz
 bx = _bx
 return bx

ddfdx函数就是所生成的函数,从中我们也可以看到表达式z的导函数z'=2 * x,tangent就是通过执行该函数用于求得导数的;

sympy 中的自动微分只是它强大的功能之一,autograd 从名字也可知它就是为了自动微分而生的,tangent初出茅庐2017年底Google才发布的自动微分方法也比较新颖,从17年发v0.1.8版本后也没见发版,源码更新也不够活跃;sympy、autograd比较成熟,tangent还有待观察;

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python方法生成txt标签文件的实例代码

python方法生成txt标签文件的实例代码

1、如果想要利用代码(不论是python、c++、亦或是matlab)实现生成标签文件,首先,也是灰常重要的一件事就是你的图片集一定要是有规律的命名。数字字母顺序排开。这一点非常重要,相...

python实现kmp算法的实例代码

python实现kmp算法的实例代码

kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置 比如 abababc 那么bab在其位置1处,bc在其位置5处 我们首先想到的最简...

Django工程的分层结构详解

Django工程的分层结构详解

前言 传统上我们都知道在Django中的MTV模式,具体内容含义我们再来回顾一下: M:是Model的简称,它的目标就是通过定义模型来处理和数据库进行交互,有了这一层或者这种类型的对象...

如何用Python来搭建一个简单的推荐系统

在这篇文章中,我们会介绍如何用Python来搭建一个简单的推荐系统。 本文使用的数据集是MovieLens数据集,该数据集由明尼苏达大学的Grouplens研究小组整理。它包含1,10和...

Python中Collection的使用小技巧

本文所述实例来自独立软件开发者 Alex Marandon,在他的博客中曾介绍了数个关于 Python Collection 的实用小技巧,在此与大家分享。供大家学习借鉴之用。具体如下:...